

CHIP NOISE FILTER NFZ5BBW□□□LN10□ REFERENCE SPECIFICATION

1.Scope

This reference specification applies to NFZ5BBW_LN10L Series, Chip Noise Filter.

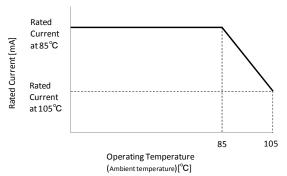
2.Part Numbering

(ex)NFZ5BBW2R9LN10LProduct IDStructureDimension (L×W)FeaturesImpedancePerformanceCategory of CircuitNumbers Other of CircuitPackaging L:Taping

3.Rating

•Operating Temperature Range.(Ambient temperature; Self-temperature rise is not included) -40 to +105°C (Product temperature; Self- temperature rise is included) -40 to +125°C

•Storage Temperature Range. -40 to +105°C


		Impeda	nce at 1MHz		*1 Rated Curre	ent(mA)
Customer Part Number	MURATA Part Number	(Ω)	Tolerance (%)	DC Resistance (Ω)	*2 Ambient temperature 85°C	*3 Ambient temperature 105°C
	NFZ5BBW2R9LN10L NFZ5BBW2R9LN10K	2.9		0.012±20%	4000	2050
	NFZ5BBW4R5LN10L	4.5		0.015±20%		
	NFZ5BBW4R5LN10K	4.5		0.015±20%	3400	1800
	NFZ5BBW6R7LN10L NFZ5BBW6R7LN10K	6.7		0.019±20%	3100	1680
	NFZ5BBW7R6LN10L NFZ5BBW7R6LN10K	7.6	±30	0.019±20%	3100	1680
	NFZ5BBW100LN10L NFZ5BBW100LN10K	10		0.024±20%	3000	1630
	NFZ5BBW140LN10L NFZ5BBW140LN10K	14		0.030±20%	2600	1370
	NFZ5BBW170LN10L NFZ5BBW170LN10K	17		0.035±20%	2500	1230
	NFZ5BBW220LN10L NFZ5BBW220LN10K	22		0.044±20%	2300	1210
	NFZ5BBW310LN10L NFZ5BBW310LN10K	31		0.058±20%	2000	1090
	NFZ5BBW450LN10L NFZ5BBW450LN10K	45		0.083±20%	1650	1020
	NFZ5BBW520LN10L NFZ5BBW520LN10K	52		0.100±20%	1610	1010
	NFZ5BBW610LN10L NFZ5BBW610LN10K	61		0.106±20%	1600	1000
	NFZ5BBW970LN10L NFZ5BBW970LN10K	97		0.187±20%	1200	700
	NFZ5BBW141LN10L NFZ5BBW141LN10K	140		0.259±20%	1050	600

^{*1:} As for the rated current, rated current derated as figure.1 depending on the operating temperature.

^{*2:} When applied rated current to the Products, temperature rise caused by self heating will be 40°C or less.

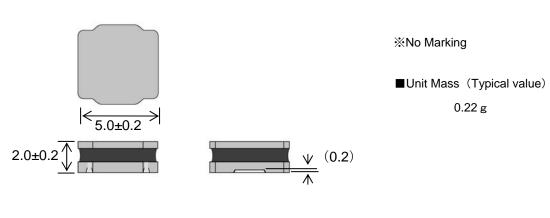
^{*3:} When applied rated current to the Products, temperature rise caused by self heating will be 20°C or less.

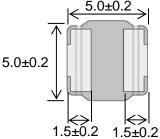
Fugure. 1

4. Testing Conditions

《Unless otherwise specified》

Temperature : Ordinary Temperature (15 to 35°C)


Humidity : Ordinary Humidity (25 to 85 %(RH))


《In case of doubt》

Temperature : 20 ± 2°C

Humidity : 60 to 70 %(RH) Atmospheric Pressure : 86 to 106 kPa

5. Appearance and Dimensions

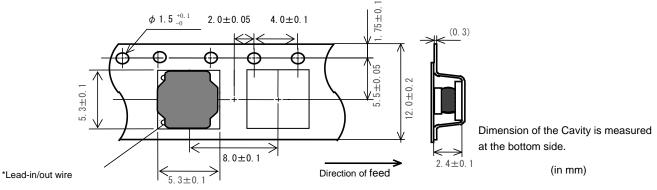
6.Electrical Performance

No.	Item	Specification	Test Method
6.1	Impedance	Impedance shall meet item 3.	Measuring Equipment : Agilent 4284A or equivalent
			Measuring Frequency: 1MHz
6.2	DC Resistance	DC Resistance shall meet item 3.	Measuring Equipment: Digital multi meter

Reference Only

7.Mechanical Performance

No.	Item	Specification	Test Method
7.1	Shear Test	Chip Noise Filter shall not be damaged.	Substrate: Glass-epoxy substrate
			Force: 10N
			Hold Duration: 5±1s
			Substrate
7.2	Bending Test		Substrate: Glass-epoxy substrate
			(100 × 40 × 1.6mm)
			Speed of Applying Force: 0.5mm / s
			Deflection: 2mm
			Hold Duration: 5s
			Pressure jig
			R230 \ F
			Deflection
			45 45 Product
			(in mm)
7.3	Vibration	Chip Noise Filter shall not be damaged.	Oscillation Frequency: 10 to 2000 to 10Hz for 20 min
			Total amplitude : 1.5 mm or Acceleration amplitude
			98 m/s ² whichever is smaller.
			Testing Time: A period of 2 hours in each of
			3 mutually perpendicular directions.
<u> </u>			(Total 6 hours)
7.4	Solderability	The wetting area of the electrode shall	Flux: Ethanol solution of rosin,25(wt)%
		be at least 90% covered with new	(Immersed for 5s to 10s)
		solder coating.	Solder: Sn-3.0Ag-0.5Cu
			Pre-Heating: 150±10°C / 60 to 90s
			Solder Temperature: 240±5°C
			Immersion Time: 3±1 s
7.5	Resistance to	Appearance: No damage	Flux: Ethanol solution of rosin,25(wt)%
	Soldering Heat	Impedance Change: within ± 10%	(Immersed for 5s to 10s)
			Solder: Sn-3.0Ag-0.5Cu
			Pre-Heating: 150±10°C / 60 to 90s
			Solder Temperature: 270±5°C
			Immersion Time: 10±1 s
			Then measured after exposure in the room
			condition for 24±2 hours.


Reference Only

8.Environmental Performance (It shall be soldered on the substrate.)

No.	Item	Specification	Test Method
8.1	Heat Resistance	Appearance: No damage Impedance Change: within ± 10% DC Resistance Change: within ± 10%	Temperature: 105±2°C Time: 1000± $^{48}_{0}$ hours Then measured after exposure in the room condition for 24±2 hours.
8.2	Cold Resistance		Temperature: -40±2°C Time: 1000± $^{48}_0$ hours Then measured after exposure in the room condition for 24±2 hours.
8.3	Humidity		Temperature: 40±2°C Humidity: 90~95%(RH) Time: 1000± $^{48}_{0}$ hours Then measured after exposure in the room condition for 24±2 hours.
8.4	Temperature Cycle		1 cycle: 1 step: -40±2°C / 30±3 min 2 step: Ordinary temp. / 10 to 15 min 3 step: +105±2°C / 30±3 min 4 step: Ordinary temp. / 10 to 15 min Total of 10 cycles Then measured after exposure in the room condition for 24±2 hours.

9. Specification of Packaging

9.1 Appearance and Dimensions of plastic tape

9.2 Specification of Taping

(1) Packing quantity (standard quantity) ϕ 180 mm reel : 500 pcs. / reel ϕ 330 mm reel : 3000 pcs. / reel

(2) Packing Method

Products shall be packed in the each embossed cavity of plastic tape and sealed by cover tape.

(3) Sprocket hole

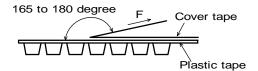
The sprocket holes are to the right as the tape is pulled toward the user.

(4) Spliced point

Plastic tape and Cover tape has no spliced point.

(5) Missing components number

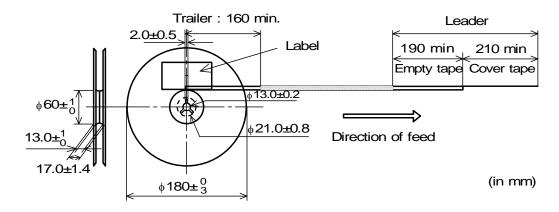
Missing components number within 0.1 % of the number per reel or 1 pc., whichever is greater, and are not continuous. The specified quantity per reel is kept.


9.3 Pull Strength

Embossed carrier tape	10N min.
Cover tape	5N min.

Reference Only

9.4 Peeling off force of cover tape


	•	
Speed of Peeling off	300mm/min	
Decling off force	0.2 to 0.7N	
Peeling off force	(minimum value is typical)	


9.5 Dimensions of Leader-tape, Trailer and Reel

There shall be leader-tape (cover tape) and trailer-tape (empty tape) as follows.

« Packaging Code : L (φ 180mm reel) »

« Packaging Code : K (\$\phi\$ 330mm reel) »

9.6 Marking for reel

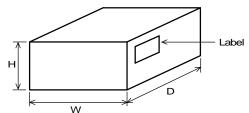
Customer part number, MURATA part number, Inspection number(*1), RoHS marking (*2), Quantity etc · · ·

- *1) « Expression of Inspection No. »
- $\frac{\Box\Box}{(1)} \quad \frac{OOOO}{(2)} \quad \frac{\times \times \times}{(3)}$
- (1) Factory Code
- (2) Date First digit : Year / Last digit of year

Second digit : Month / Jan. to Sep. \rightarrow 1 to 9, Oct. to Dec. \rightarrow O, N, D

Third, Fourth digit: Day

(3) Serial No.


- *2) « Expression of RoHS marking »
- ROHS \underline{Y} ($\underline{\triangle}$)
- (1) RoHS regulation conformity parts.
- (2) MURATA classification number

9.7 Marking for Outside package (corrugated paper box)

Customer name, Purchasing order number, Customer part number, MURATA part number, RoHS marking (*2) ,Quantity, etc \cdots

9.8. Specification of Outer Case

	Outer Case			Standard Reel
Bool	Dimensions			Quantity in
Reel	(mm)			Outer Case
	W	D	Н	(Reel)
φ 180mm	186	186	93	4
φ330mm	340 340 95			4

^{*} Above Outer Case size is typical. It depends on a quantity of an order.

10. A Caution

Limitation of Applications

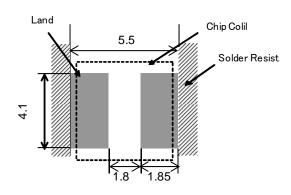
Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- (1) Aircraft equipment
- (7) Traffic signal equipment
- (2) Aerospace equipment
- (8) Disaster prevention / crime prevention equipment
- (3) Undersea equipment
- (9) Data-processing equipment
- (4) Power plant control equipment
- (10) Applications of similar complexity and /or reliability requirements
- (5) Medical equipment
- to the applications listed in the above
- (6) Transportation equipment (vehicles, trains, ships, etc.)

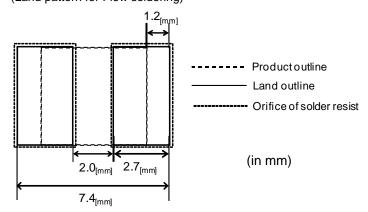
11. Notice

This product is designed for solder mounting.

Please consult us in advance for applying other mounting method such as conductive adhesive.


11.1 Land pattern designing

Recommended land pattern for flow and reflow soldering is as follows:

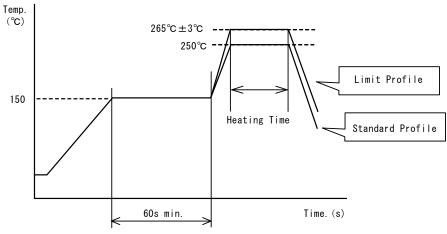

It has been designed for Electric characteristics and solderability.

Please follow the recommended patterns. Otherwise, their performance which includes electrical performance or solderability may be affected, or result to "position shift" in soldering process.

(Land pattern for Reflow soldering)

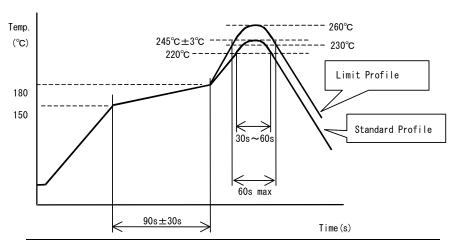
(Land pattern for Flow soldering)

11.2 Flux, Solder


Flux	 Use rosin-based flux. Don't use highly acidic flux with halide content exceeding 0.2(wt)% (chlorine conversion value). Don't use water-soluble flux.
Solder	• Use Sn-3.0Ag-0.5Cu solder
Solder	• Standard thickness of solder paste : 100μ m to 150μ m

Other flux (except above) Please contact us for details, then use.

11.3 Flow soldering conditions / Reflow soldering conditions


- Pre-heating should be in such a way that the temperature difference between solder and product surface is limited to 100°C max. Cooling into solvent after soldering also should be in such a way that the temperature difference is limited to 100°C max.
 - Insufficient pre-heating may cause cracks on the product, resulting in the deterioration of product quality.
- Standard soldering profile and the limit soldering profile is as follows.
 The excessive limit soldering conditions may cause leaching of the electrode and / or resulting in the deterioration of product quality.

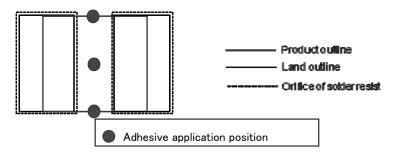
(1)Flow soldering profile

	Standard Profile	Limit Profile
Pre-heating	150℃、	60s min.
Heating	250°C、4s∼6s	265°C±3°C、5s
Cycle of flow	2 times	1 time

(2)Reflow soldering profile

	Standard Profile	Limit Profile
Pre-heating	150~180°C	、90s±30s
Heating	above 220°C、30s∼60s	above 230°C, 60s max.
Peak temperature	245±3°C	260°C,10s
Cycle of reflow	2 times	2 times

11.4 Reworking with soldering iron.

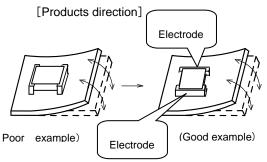

The following conditions must be strictly followed when using a soldering iron.

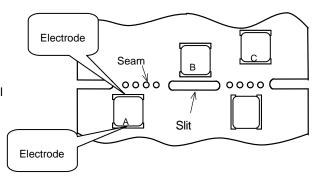
Pre-heating	150°C,1 min	
Tip temperature	380°C max.	
Soldering iron output	80W max.	
Tip diameter	ϕ 3mm max.	
Soldering time	3 (+1,-0)s	
Times	2 times	

Note :Do not directly touch the products with the tip of the soldering iron in order to prevent the crack on the products due to the thermal shock.

11.5 Solder Volume

· Adhesive application of flow is recommended the 3-point application. (prevent the drop of products)


• Amount of adhesive applied is a standard 1/2 to 2/3 of the bottom flange thickness.


11.6 Product's location

The following shall be considered when designing and laying out P.C.B.'s.

(1) P.C.B. shall be designed so that products are not subject to the mechanical stress due to warping the board.

(2) Products location on P.C.B. separation Products (A,B,C,D) shall be located carefully so that products are not subject to the mechanical stress due to warping the board. Because they may be subjected the mechanical stress in order of A>C>B ≅ D. Products shall be located in the sideways direction (Length:a<b) to the mechanical stress.

11.7 Cleaning Conditions

Products shall be cleaned on the following conditions.

- (1) Cleaning temperature shall be limited to 60°C max.(40°C max for IPA.)
- (2) Ultrasonic cleaning shall comply with the following conditions with avoiding the resonance phenomenon at the mounted products and P.C.B.

Power: 20 W / I max. Frequency: 28kHz to 40kHz Time: 5 minutes max.

- (3) Cleaner
 - 1. Alternative cleaner
 - Isopropyl alcohol (IPA)
 - 2. Aqueous agent
 - PINE ALPHA ST-100S
- (4) There shall be no residual flux and residual cleaner after cleaning.

In the case of using aqueous agent, products shall be dried completely after rinse with de-ionized water in order to remove the cleaner.

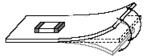
(5) Other cleaning

Please contact us.

11.8 Resin coating

The impedance value may change due to high cure-stress of resin to be used for coating/molding products. An open circuit issue may occur by mechanical stress caused by the resin, amount/cured shape of resin, or operating condition etc. Some resin contains some impurities or chloride possible to generate chlorine by hydrolysis under some operating condition may cause corrosion of wire, leading to open circuit. So, please pay your careful attention when you select resin in case of coating/molding the products with the resin.Prior to use the coating resin, please make sure no reliability issue is observed by evaluating products mounted on your board.

11.9 Caution for use


- Sharp material such as a pair of tweezers or other material such as bristles of cleaning brush, shall not be touched to the winding portion to prevent the breaking of wire.
- Mechanical shock should not be applied to the products mounted on the board to prevent the breaking of the core.

11.10 Handling of a substrate

After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting to the substrate when cropping the substrate, inserting and removing a connector from the substrate or tightening screw to the substrate.

Excessive mechanical stress may cause cracking in the product.

Bending

Twisting

11.11 Storage and Handling Requirements

(1) Storage period

Use the products within 12 months after delivered.

Solderability should be checked if this period is exceeded.

(2) Storage conditions

• Products should be stored in the warehouse on the following conditions.

Temperature: -10 ~ 40°C

Humidity : 15 to 85% relative humidity No rapid change on temperature and humidity

The electrode of the products is coated with solder. Don't keep products in corrosive gases such as sulfur, chlorine gas or acid, or it may cause oxidization of electrode, resulting in poor solderability.

- Products should not be stored on bulk packaging condition to prevent the chipping of the core and the breaking of winding wire caused by the collision between the products.
- Products should be stored on the palette for the prevention of the influence from humidity, dust and so on.
- Products should be stored in the warehouse without heat shock, vibration, direct sunlight and so on.

(3) Handling Condition

Care should be taken when transporting or handling product to avoid excessive vibration or mechanical shock.

12. 🗥 Note

- (1)Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- (2)You are requested not to use our product deviating from the reference specifications.
- (3)The contents of this reference specification are subject to change without advance notice. Please approve our product specifications or transact the approval sheet for product specifications before ordering.

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru