# RICOH R5487L/R5497L Series

## Li-ion/Li-polymer 1 Cell Protector

NO. EA-357-160617

## OUTLINE

The R5487L/R5497L Series is high voltage CMOS-based protection ICs for over-charge/discharge of rechargeable one-cell Lithium-ion/Lithium polymer excess load current, further include a short circuit protector for preventing large external short circuit current and excess charge/discharge-current.

The R5487L/R5497L Series is composed of four voltage detectors, reference units, a delay circuit, a short circuit protector, an oscillator, a counter, and logic circuits.

The output of Over-charge detector or Excess charge-current detector switches to "L" level after internally fixed delay time, when discharged voltage crosses the detector threshold from a low value to a high value.

They have two types to release Over-charge detector. The one is called "Latch type". The output of  $C_{OUT}$  switches to "H" when a kind of load is connected to  $V_{DD}$  after a charger is disconnected from the battery pack, and the cell voltage becomes lower than over-charge detector threshold.

The other is called "Auto Release type". The output of  $C_{OUT}$  switches to "H", when the cell voltage is lower than over-charge detector threshold, or by disconnecting a charger.

The output of Over-discharge detector or Excess discharge-current detector switches to "L" level after internally fixed delay time, when discharged voltage crosses the detector threshold from a high value to a value lower than  $V_{DET2}$ .

They have two types to release Over-discharge detector.

The one is called "Latch type". The output of  $D_{OUT}$  switches to "H" by connecting a charger to the battery pack when the battery supply voltage becomes higher than the over-discharge detector threshold.

The other is called "Auto Release type", in case that the charger is not connected, when the cell voltage becomes equal released voltage from over-discharge detector is released. In case that a charger is connected, and when the cell voltage becomes higher than the over-discharge detector threshold, or becomes released voltage from over-discharge without connecting a charger, the over-discharge detector is released.

Even if the battery is discharged to 0V, charge current is normally acceptable. However, KD version and KM version are 0V batteries unacceptable types.

An excess discharge-current and short circuit state can be sensed and cut off through the built in excess current detector with D<sub>OUT</sub> being enabled to low level. Once after detecting excess discharge-current or short circuit is released and D<sub>OUT</sub> level switches to high by detaching a battery pack from a load system.

After detecting over-discharge, supply current will be kept extremely low by halting internal circuits' operation. When the output of  $C_{OUT}$  is "H", if V- pin level is set at  $V_{SS}$ -2V or lower, the delay time of detector can be shortened. Especially, the delay time of over-charge detector can be reduced into approximately 1/60. Therefore, testing time of protector circuit board can be reduced. Output type of  $C_{OUT}$  and  $D_{OUT}$  are CMOS. The R5487L/R5497L Series have DFN1414-6B and DFN1814-6B.

NO. EA-357-160617

## **FEATURES**

#### Manufactured with High Voltage Tolerant Process

#### Low Supply Current

- Supply current (At normal mode).....Typ. 3.0μA
- At detecting over-discharge ...... Max. 0.1µA (Over-discharge Latch type)

Max. 0.5µA (Over-discharge Auto-release type)

#### **High Accuracy Detector Threshold**

| Over-charge detector                       | ±20mV (Ta=25°C)             |
|--------------------------------------------|-----------------------------|
|                                            | ±25mV (Ta =–20°C to 60°C)   |
| Over-discharge detector                    | ±35mV                       |
| • Excess discharge-current detector(VDET3) | ±10mV (VDET3≧0.100V)        |
|                                            | ±10% (0.050V≦VDET31<0.100V) |
|                                            | ±5mV (VDET31<0.050V)        |
| • Excess charge-current detector(VDET4)    | ±10% (VDET4≦-0.05V)         |
|                                            | ±5mV (VDET4>-0.05V)         |
|                                            |                             |

#### Variety of Detector Threshold

- Over-charge detector threshold ......4.2V to 4.6V step of 0.005V
- Over-discharge detector threshold ......2.0V to 3.0V step of 0.100V
- Over-discharge release threshold......2.4V to 3.2V step of 0.100V
- Excess discharge-current threshold ......0.025V to 0.15V step of 0.001V
- Excess charge-current threshold ......-0.15V to -0.02V step of 0.001V

#### Internal Fixed Output Delay Time

- Over-charge detector Output Delay......1.0s
- Excess discharge-current detector Output Delay ...12ms
- Excess charge-current detector Output Delay ...... 8ms

#### **Output Delay Time Shortening Function**

At  $C_{OUT}$  is "H", if V- level is set at typically –2V, the Output Delay time of all items except short-circuit can be reduced.(Delay Time for over-charge becomes about 1/60 of normal state.)

- OV-battery charge option.....Acceptable/Unacceptable
- Conditions for release over-charge detector.....Latch type/Auto Release type
- Conditions for release over-discharge detector ..... Latch type /Auto Release type
- Conditions for release short-current detector ....... Normal type / Auto Release type \*Note1

#### \*Note1

Normal type: Return Load Resistance Threshold from Over-Discharge Current Status is less than about 300Kohm. Auto Release type: Return Load Resistance Threshold from Over-Discharge Current Status is less than 25Kohm. (Ta =25°C)

#### Ultra Small Package

• The R5487L/R5497L Series have DFN1414-6B and DFN1814-6B.

NO. EA-357-160617

## **APPLICATIONS**

- Li+ / Li Polymer protector of over-charge, over-discharge, excess-current for battery pack.
- High precision protectors for smart-phones and any other gadgets using on board Li+ / Li Polymer battery

## **SELECTION GUIDE**

The voltage version, on, and package for the ICs can be selected by the user's request.

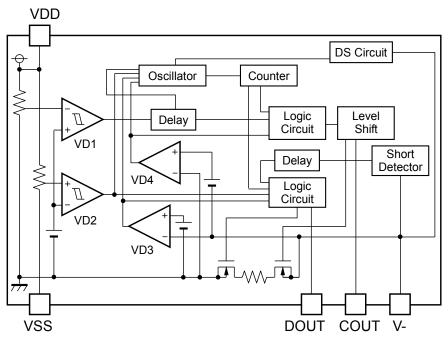
| Product Name        | Package                 | Quantity per Reel | Pb Free | Halogen Free |
|---------------------|-------------------------|-------------------|---------|--------------|
| R5487L5xx \$*-TR-FE | DFN1414-6B<br>⇒wiring A | 5,000 pcs         | Yes     | Yes          |
| R5497L5xx \$*-TR-FE | DFN1414-6B<br>⇒wiring B | 5,000 pcs         | Yes     | Yes          |
| R5487L1xx \$*-TR-FE | DFN1814-6B              | 5,000 pcs         | Yes     | Yes          |

xxx : Setting voltage version

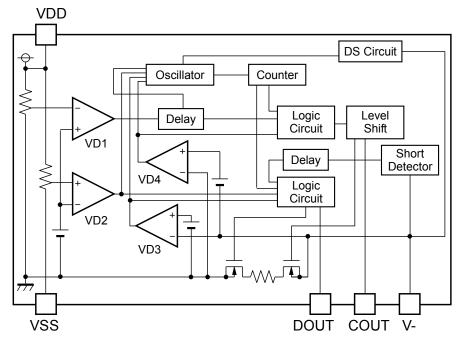
\$: Designation of delay time version

\* : Designation of Function version

| Version | Over-Charge  | Over-Discharge | Excess-discharge-<br>current *Note1 | 0V Charge |
|---------|--------------|----------------|-------------------------------------|-----------|
| D       | Auto-Release | Auto-Release   | Normal                              | OK        |
| F       | Auto-Release | Auto-Release   | Normal                              | NG        |
| М       | Auto-Release | Auto-Release   | Auto-Release                        | OK        |
| Р       | Auto-Release | Auto-Release   | Auto-Release                        | NG        |
| Q       | Latch        | Latch          | Auto-Release                        | OK        |


Note1: Return Load Resistance Threshold from Over-Discharge Current Status Normal : Less than about 300Kohm

Auto-Release: Less than 20Kohm

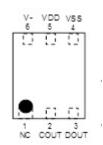

NO. EA-357-160617

## **BLOCK DIAGRAMS**

• R5487L/R5497Lxxx\$D, R5487L/R5497Lxxx\$F, R5487L/R5497Lxxx\$P, R5487L/R5497Lxxx\$M

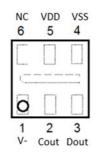







NO. EA-357-160617

## **PIN DESCRIPTIONS**


#### • DFN1814-6B

R5487Lyxxx (y:1~4)



● **DFN1414-6B** ⇒wiring A R5487Lyxxx (y:5~8)

• DFN1414-6B ⇒wiring B R5497Lyxxx (y:5~8)



|             | Pin No.                 |                         |        |                                                         |
|-------------|-------------------------|-------------------------|--------|---------------------------------------------------------|
| R5487L1xxXX | R5487L5xxXX             | R5497L5xxXX             | Symbol | Description                                             |
| DFN1814-6B  | DFN1414-6B<br>⇒wiring A | DFN1414-6B<br>⇒wiring B | -      |                                                         |
| 6           | 6                       | 1                       | V-     | Pin for charger negative input                          |
| 5           | 5                       | 5                       | VDD    | Power supply pin, the substrate voltage level of the IC |
| 2           | 1                       | 2                       | COUT   | Output of over-charge detection, CMOS output            |
| 3           | 3                       | 3                       | DOUT   | Output of over-discharge detection, CMOS output         |
| 1           | 2                       | 6                       | NC     | No Connection pin                                       |
| 4           | 4                       | 4                       | VSS    | VSS pin. Ground pin for the IC                          |

NO. EA-357-160617

## **ABSOLUTE MAXIMUM RATINGS**

| Symbol          | Item                           | Rating                                      | Unit  |
|-----------------|--------------------------------|---------------------------------------------|-------|
| V <sub>DD</sub> | Input Voltage                  | -0.3 to 12.0                                | V     |
| V-              | Input Voltage<br>V- pin        | V <sub>DD</sub> -30 to V <sub>DD</sub> +0.3 | V     |
| Vcout           | Output Voltage (COUT pin)      | $V_{DD}$ -30 to $V_{DD}$ +0.3               | V     |
| Vdout           | Output Voltage (DOUT pin)      | Vss-0.3 to V <sub>DD</sub> +0.3             | V     |
| PD              | Power Dissipation (DFN1414-6B) | 150                                         | mW    |
| FD              | Power Dissipation (DFN1814-6B) | 150                                         | 11100 |
| Tj              | Junction Temperature Range     | -40 to 125                                  | °C    |
| Tstg            | Storage Temperature Range      | –55 to 125                                  | °C    |

#### **ABSOLUTE MAXIMUM RATINGS**

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

## **RECOMMENDED OPERATING CONDITIONS**

| Symbol | ltem                        | Rating     | Unit |
|--------|-----------------------------|------------|------|
| Vdd1   | Operating Voltage           | 1.5 to 5.0 | V    |
| Та     | Operating Temperature Range | −40 to 85  | °C   |

#### **RECOMMENDED OPERATING CONDITIONS**

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

NO. EA-357-160617

## **ELECTRICAL CHARACTERISTICS**

| R5487LxxxKD Electric                                                        |             |                                                                    | Unless otherwise provided, Ta=2 |                   |                           |     |
|-----------------------------------------------------------------------------|-------------|--------------------------------------------------------------------|---------------------------------|-------------------|---------------------------|-----|
| ltem                                                                        | Symbol      | Conditions                                                         | Min.                            | Тур.              | Max.                      | Uni |
| Minimum Operating<br>Voltage for 0V Charging                                | Vst         | Voltage Defined as<br>V <sub>DD</sub> -V-, V <sub>DD</sub> -Vss=0V |                                 |                   | 1.8                       | V   |
| Over-charge Threshold                                                       | \/ <b>4</b> | R1=330Ω                                                            | Vdet1-0.020                     | VDET1             | VDET1+0.020               | V   |
| Voltage                                                                     | VDET1       | R1=330Ω, Ta=-20°C to 60°C <sup>*Note2</sup>                        | VDET1-0.025                     | VDET1             | VDET1+0.025               | V   |
| Released voltage from<br>Over-charge                                        | VREL1       | R1=330Ω                                                            | V <sub>REL1</sub> -0.05         | $V_{REL1}$        | V <sub>REL</sub> +0.05    | V   |
| Output Delay of<br>Over-charge                                              | tVDET1      | V <sub>DD</sub> =3.6V→4.65V                                        | 0.7                             | 1.0               | 1.3                       | s   |
| Release Delay for VD1                                                       | tVREL1      | V <sub>DD</sub> =4.65V→3.6V                                        | 11                              | 16                | 21                        | ms  |
| Over-discharge Threshold                                                    | VDET2       | Detect falling edge of<br>supply voltage                           | Vdet2-0.035                     | VDET2             | Vdet2+0.035               | V   |
| Released Voltage from<br>Over-discharge                                     | VREL2       | Detect rising edge of<br>supply voltage                            | V <sub>REL2</sub> × 0.975       | V <sub>REL2</sub> | V <sub>REL2</sub> × 1.025 | V   |
| Output Delay of<br>Over-discharge<br>(V <sub>DET2</sub> ≥ 2.1V)             | tVDET2      | V <sub>DD</sub> =3.6V→2.0V                                         | 14                              | 20                | 26                        | ms  |
| Output Delay of<br>Over-discharge<br>(V <sub>DET2</sub> < 2.1V)             | tVDET2      | V <sub>DD</sub> =3.6V→1.9V                                         | 14                              | 20                | 26                        | ms  |
| Release Delay for VD2 $(V_{DET2} \ge 2.1V)$                                 | tVREL2      | V <sub>DD</sub> =2.0V→3.6V                                         | 0.7                             | 1.2               | 1.7                       | ms  |
| Release Delay for VD2<br>(V <sub>DET2</sub> < 2.1V)                         | tVREL2      | V <sub>DD</sub> =1.9V→3.6V                                         | 0.7                             | 1.2               | 1.7                       | ms  |
| Excess discharge-current threshold $(V_{DET3} \le 0.05V)$                   | VDET3       | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V               | Vdet3-0.005                     | Vdet3             | Vdet3+0.005               | V   |
| Excess discharge-current<br>threshold<br>(0.05V < V <sub>DET3</sub> < 0.1V) | Vdet3       | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V               | Vdet3 × 0.9                     | Vdet3             | Vdet3 × 1.1               | V   |
| Excess discharge-current threshold $(V_{DET3} \ge 0.1V)$                    | VDET3       | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V               | Vdet3-0.010                     | Vdet3             | Vdet3+0.010               | V   |
| Output delay of excess discharge-current                                    | tVDET3      | V <sub>DD</sub> =3.1V, V-=0V to [ Vshort<br>×0.77-0.01V ]          | 8                               | 12                | 16                        | ms  |
| Output delay of release<br>from excess discharge-<br>current                | tVREL3      | V <sub>DD</sub> =3.1V, V-=3.1V to 0V                               | 0.7                             | 1.2               | 1.7                       | ms  |
| Short Protection Voltage                                                    | Vshort      | V <sub>DD</sub> =3.1V                                              | Vshort<br>×0.75                 | Vshort            | Vshort<br>×1.25           | V   |

NO. EA-357-160617

#### R5487LxxxKD Electrical Characteristics (Continued) Unless otherwise provided, Ta=25°C

| ltem                                                               | Symbol            | Conditions                                            | Min.        | Тур.  | Max.                    | Unit |
|--------------------------------------------------------------------|-------------------|-------------------------------------------------------|-------------|-------|-------------------------|------|
| Delay Time for<br>Short Protection                                 | tshort            | V <sub>DD</sub> =3.1V, V-=0V to 0.5V                  | 180         | 250   | 425                     | μs   |
| Reset Resistance for<br>Excess Current Protection                  | Rshort            | V <sub>DD</sub> =3.6V,V- =1.0V                        | 14          | 20.5  | 27                      | kΩ   |
| Excess charge-current<br>Threshold<br>(V <sub>DET4</sub> > -0.05V) | Vdet4             | Detect falling edge of<br>'V-' pin voltage. VDD =3.1V | Vdet4-0.005 | Vdet4 | Vdet4+0.005             | V    |
| Excess charge-current<br>Threshold<br>(V <sub>DET4</sub> ≤ -0.05V) | Vdet4             | Detect falling edge of<br>'V-' pin voltage. VDD =3.1V | Vdet4 × 1.1 | Vdet4 | V <sub>DET4</sub> × 0.9 | V    |
| Output delay of excess<br>charge-current                           | tVDET4            | V <sub>DD</sub> =3.1V, V-=0V to -1V                   | 5           | 8     | 11                      | ms   |
| Output delay of release<br>from excess charge-<br>current          | tVREL4            | V <sub>DD</sub> =3.1V, V-=-1V to 0V                   | 0.7         | 1.2   | 1.7                     | ms   |
| Delay Time Shortening<br>Mode Voltage                              | Vds               | V <sub>DD</sub> =3.6V                                 | -2.6        | -2.0  | -1.4                    | V    |
| Nch ON-Voltage of COUT                                             | VoL1              | lol=50μA, V <sub>DD</sub> =4.8V                       |             | 0.4   | 0.5                     | V    |
| Pch ON-Voltage of COUT                                             | VoH1              | loh=-50μA, V <sub>DD</sub> =3.9V                      | 3.4         | 3.7   |                         | V    |
| Nch ON-Voltage of DOUT<br>( $V_{DET2} \ge 2.1V$ )                  | V <sub>oL</sub> 2 | lol=50μA, V <sub>DD</sub> =2.0V                       |             | 0.2   | 0.5                     | V    |
| Nch ON-Voltage of DOUT<br>(V <sub>DET2</sub> < 2.1V)               | VoL2              | lol=50μΑ, V <sub>DD</sub> =1.9V                       |             | 0.2   | 0.5                     | V    |
| Pch ON-Voltage of DOUT                                             | VoH2              | loh=-50μA, V <sub>DD</sub> =3.9V                      | 3.4         | 3.7   |                         | V    |
| Supply Current                                                     | IDD               | V <sub>DD</sub> =3.9V, V- =0V                         |             | 3.0   | 6.0                     | μA   |
| Standby Current<br>(V <sub>DET2</sub> ≥ 2.1V)                      | Istandby          | V <sub>DD</sub> =2.0V                                 |             |       | 0.5                     | μA   |
| Standby Current<br>(V <sub>DET2</sub> < 2.1V)                      | Istandby          | V <sub>DD</sub> =1.9V                                 |             |       | 0.5                     | μA   |

NO. EA-357-160617

| R5487LxxxKM Electric                                                       | Symbol | Conditions                                                         | Min.                       | <b>Typ.</b>       | rovided, Ta=:<br>Max.      | Uni    |
|----------------------------------------------------------------------------|--------|--------------------------------------------------------------------|----------------------------|-------------------|----------------------------|--------|
|                                                                            | Symbol |                                                                    | IVIII.                     | тур.              | IVIdX.                     | UIII   |
| Minimum Operating<br>Voltage for 0V Charging                               | Vst    | Voltage Defined as<br>V <sub>DD</sub> -V-, V <sub>DD</sub> -Vss=0V |                            |                   | 1.8                        | V      |
| Over-charge Threshold Voltage                                              | VDET1  | R1=330Ω<br>R1=330Ω, Ta=-20°C to 60°C <sup>*Note2</sup>             | Vdet1-0.020<br>Vdet1-0.025 | Vdet1<br>Vdet1    | Vdet1+0.020<br>Vdet1+0.025 | V<br>V |
| Released voltage from<br>Over-charge                                       | VREL1  | R1=330Ω                                                            | Vrel1-0.05                 | V <sub>REL1</sub> | VREL+0.05                  | V      |
| Output Delay of<br>Over-charge                                             | tVDET1 | VDD=3.6V→4.65V                                                     | 0.7                        | 1.0               | 1.3                        | s      |
| Release Delay for VD1                                                      | tVREL1 | VDD=4.65V→3.6V                                                     | 11                         | 16                | 21                         | ms     |
| Over-discharge Threshold                                                   | VDET2  | Detect falling edge of<br>supply voltage                           | Vdet2-0.035                | V <sub>DET2</sub> | Vdet2+0.035                | v      |
| Released Voltage from<br>Over-discharge                                    | VREL2  | Detect rising edge of supply voltage                               | V <sub>REL2</sub> × 0.975  | V <sub>REL2</sub> | V <sub>REL2</sub> × 1.025  | V      |
| Output Delay of<br>Over-discharge<br>(V <sub>DET2</sub> ≥ 2.1V)            | tVDET2 | V <sub>DD</sub> =3.6V→2.0V                                         | 14                         | 20                | 26                         | ms     |
| Output Delay of<br>Over-discharge<br>(V <sub>DET2</sub> < 2.1V)            | tVDET2 | V <sub>DD</sub> =3.6V→1.9V                                         | 14                         | 20                | 26                         | ms     |
| Release Delay for VD2 $(V_{DET2} \ge 2.1V)$                                | tVREL2 | V <sub>DD</sub> =2.0V→3.6V                                         | 0.7                        | 1.2               | 1.7                        | ms     |
| Release Delay for VD2<br>(V <sub>DET2</sub> < 2.1V)                        | tVREL2 | V <sub>DD</sub> =1.9V→3.6V                                         | 0.7                        | 1.2               | 1.7                        | ms     |
| Excess discharge-current threshold $(V_{DET3} \le 0.05V)$                  | Vdet3  | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V               | Vdet3-0.005                | Vdet3             | Vdet3+0.005                | v      |
| Excess discharge-current<br>threshold<br>(0.05V < V <sub>DET3</sub> <0.1V) | Vdet3  | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V               | Vdet3 × 0.9                | Vdet3             | Vdet3 × 1.1                | v      |
| Excess discharge-current threshold $(V_{DET3} \ge 0.1V)$                   | Vdet3  | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V               | Vdet3-0.010                | Vdet3             | Vdet3+0.010                | v      |
| Released Voltage from<br>Excess discharge-current                          | Vrel3  | Detect falling edge of<br>'V-' pin voltage. VDD<br>=3.1V           | 1.82                       | 1.935             | 2.05                       | v      |
| Output delay of excess discharge-current                                   | tVdet3 | VDD=3.1V, V-=0V to [ Vshort<br>× 0.77-0.01V ]                      | 8                          | 12                | 16                         | ms     |
| Output delay of release<br>from excess discharge-<br>current               | tVREL3 | VDD=3.1V, V-=3.1V to 0V                                            | 0.7                        | 1.2               | 1.7                        | ms     |
| Short Protection Voltage                                                   | Vshort | VDD=3.1V                                                           | Vshort<br>×0.75            | Vshort            | Vshort<br>× 1.25           | V      |

NO. EA-357-160617

| ltem                                                               | Symbol            | Conditions                                            | Min.                     | Тур.  | Max.                    | Unit |
|--------------------------------------------------------------------|-------------------|-------------------------------------------------------|--------------------------|-------|-------------------------|------|
| Delay Time for Short<br>Protection                                 | tshort            | VDD=3.1V, V-=0V to 0.5V                               | 180                      | 250   | 425                     | μs   |
| Reset Resistance for<br>Excess Current Protection                  | Rshort            | VDD=3.6V,V- =1.0V                                     | 18                       | 22    | 26                      | kΩ   |
| Excess charge-current<br>Threshold<br>(V <sub>DET4</sub> > -0.05V) | Vdet4             | Detect falling edge of<br>'V-' pin voltage. VDD =3.1V | V <sub>DET4</sub> -0.005 | Vdet4 | Vdet4+0.005             | v    |
| Excess charge-current<br>Threshold<br>(V <sub>DET4</sub> ≤ -0.05V) | Vdet4             | Detect falling edge of<br>'V-' pin voltage. VDD =3.1V | Vdet4 × 1.1              | Vdet4 | V <sub>DET4</sub> × 0.9 | v    |
| Output delay of excess charge-current                              | tVDET4            | VDD=3.1V, V-=0V to -1V                                | 5                        | 8     | 11                      | ms   |
| Output delay of release<br>from excess charge-<br>current          | tVREL4            | VDD=3.1V, V-=-1V to 0V                                | 0.7                      | 1.2   | 1.7                     | ms   |
| Delay Time Shortening<br>Mode Voltage                              | Vds               | VDD=3.6V                                              | -2.6                     | -2.0  | -1.4                    | V    |
| Nch ON-Voltage of COUT                                             | VoL1              | lol=50μA, VDD=4.8V                                    |                          | 0.4   | 0.5                     | V    |
| Pch ON-Voltage of COUT                                             | VoH1              | loh=-50μA, VDD=3.9V                                   | 3.4                      | 3.7   |                         | V    |
| Nch ON-Voltage of DOUT $(V_{DET2} \ge 2.1V)$                       | V <sub>oL</sub> 2 | lol=50μA, V <sub>DD</sub> =2.0V                       |                          | 0.2   | 0.5                     | V    |
| Nch ON-Voltage of DOUT<br>(V <sub>DET2</sub> < 2.1V)               | VoL2              | lol=50μΑ, V <sub>DD</sub> =1.9V                       |                          | 0.2   | 0.5                     | V    |
| Pch ON-Voltage of DOUT                                             | V <sub>oH</sub> 2 | loh=-50μA, VDD=3.9V                                   | 3.4                      | 3.7   |                         | V    |
| Supply Current                                                     | ldd               | VDD=3.9V, V- =0V                                      |                          | 3.0   | 6.0                     | μA   |
| Standby Current<br>(V <sub>DET2</sub> ≥ 2.1V)                      | Istandby          | V <sub>DD</sub> =2.0V                                 |                          |       | 0.5                     | μA   |
| Standby Current<br>(V <sub>DET2</sub> < 2.1V)                      | Istandby          | V <sub>DD</sub> =1.9V                                 |                          |       | 0.5                     | μA   |

NO. EA-357-160617

| R5497LxxxKF Electrical Characteristics                                     |        |                                                        | Unless otherwise provided, Ta=25° |                   |                            |        |  |
|----------------------------------------------------------------------------|--------|--------------------------------------------------------|-----------------------------------|-------------------|----------------------------|--------|--|
| Item                                                                       | Symbol | Conditions                                             | Min.                              | Тур.              | Max.                       | Unit   |  |
| Maximum Operating<br>Voltage for Inhibition of<br>Charger                  | Vnochg | Voltage Defined as<br>VDD-Vss, VDD-V-=4V               | 0.8                               | 1.2               | 1.6                        | V      |  |
| Over-charge Threshold<br>Voltage                                           | VDET1  | R1=330Ω<br>R1=330Ω, Ta=-20°C to 60°C <sup>*Note2</sup> | Vdet1-0.020<br>Vdet1-0.025        | Vdet1<br>Vdet1    | Vdet1+0.020<br>Vdet1+0.025 | V<br>V |  |
| Released voltage from<br>Over-charge                                       | VREL1  | R1=330Ω                                                | V <sub>REL1</sub> -0.05           | V <sub>REL1</sub> | V <sub>REL</sub> +0.05     | V      |  |
| Output Delay of<br>Over-charge                                             | tVDET1 | V <sub>DD</sub> =3.6V→4.65V                            | 0.7                               | 1.0               | 1.3                        | s      |  |
| Release Delay for VD1                                                      | tVREL1 | V <sub>DD</sub> =4.65V→3.6V                            | 11                                | 16                | 21                         | ms     |  |
| Over-discharge Threshold                                                   | VDET2  | Detect falling edge of<br>supply voltage               | Vdet2-0.035                       | V <sub>DET2</sub> | Vdet2+0.035                | V      |  |
| Released Voltage from<br>Over-discharge                                    | VREL2  | Detect rising edge of supply voltage                   | V <sub>REL2</sub> × 0.975         | V <sub>REL2</sub> | V <sub>REL2</sub> × 1.025  | V      |  |
| Output Delay of<br>Over-discharge<br>$(V_{DET2} \ge 2.1V)$                 | tVDET2 | V <sub>DD</sub> =3.6V→2.0V                             | 14                                | 20                | 26                         | ms     |  |
| Output Delay of<br>Over-discharge<br>(V <sub>DET2</sub> < 2.1V)            | tVDET2 | V <sub>DD</sub> =3.6V→1.9V                             | 14                                | 20                | 26                         | ms     |  |
| Release Delay for VD2 $(V_{DET2} \ge 2.1V)$                                | tVREL2 | V <sub>DD</sub> =2.0V→3.6V                             | 0.7                               | 1.2               | 1.7                        | ms     |  |
| Release Delay for VD2<br>(V <sub>DET2</sub> < 2.1V)                        | tVREL2 | V <sub>DD</sub> =1.9V→3.6V                             | 0.7                               | 1.2               | 1.7                        | ms     |  |
| Excess discharge-current threshold $(V_{DET3} \le 0.05V)$                  | Vdet3  | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V   | Vdet3-0.005                       | Vdet3             | Vdet3+0.005                | V      |  |
| Excess discharge-current<br>threshold<br>(0.05V < V <sub>DET3</sub> <0.1V) | Vdet3  | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V   | Vdet3 × 0.9                       | Vdet3             | Vdet3 × 1.1                | V      |  |
| Excess discharge-current threshold ( $V_{DET3} \ge 0.1V$ )                 | Vdet3  | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V   | Vdet3-0.010                       | V <sub>DET3</sub> | VDET3+0.010                | V      |  |
| Output delay of excess discharge-current                                   | tVDET3 | VDD=3.1V, V-=0V to [ Vshort<br>× 0.77-0.01V ]          | 8                                 | 12                | 16                         | ms     |  |
| Output delay of release<br>from excess discharge-<br>current               | tVrel3 | VDD=3.1V, V-=3.1V to 0V                                | 0.7                               | 1.2               | 1.7                        | ms     |  |
| Short Protection Voltage                                                   | Vshort | VDD=3.1V                                               | Vshort<br>×0.75                   | Vshort            | Vshort<br>×1.25            | V      |  |
| Delay Time for Short<br>Protection                                         | tshort | VDD=3.1V, V-=0V to 0.5V                                | 180                               | 250               | 425                        | μs     |  |

NO. EA-357-160617

Standby Current

 $(V_{DET2} < 2.1V)$ 

Istandby

V<sub>DD</sub>=1.9V

0.5

μA

#### R5497LxxxKF Electrical Characteristics (Continued) Unless otherwise provided, Ta=25°C Symbol Conditions ltem Min. Тур. Max. Unit Reset Resistance for Rshort VDD=3.6V,V-=1.0V 14 20.5 27 kΩ **Excess Current Protection** Excess charge-current Detect falling edge of V Threshold VDET4 Vdet4-0.005 Vdet4 Vdet4+0.005 'V-' pin voltage. VDD =3.1V $(V_{DET4} > -0.05V)$ Excess charge-current Detect falling edge of $V_{DET4} \times 0.9$ V VDET4 VDET4 × 1.1 Vdet4 Threshold 'V-' pin voltage. VDD =3.1V (V<sub>DET4</sub> ≤ -0.05V) Output delay of excess tVDET4 VDD=3.1V, V-=0V to -1V 5 8 11 ms charge-current Output delay of release from excess tVREL4 VDD=3.1V, V-=-1V to 0V 0.7 1.2 1.7 chargems current Delay Time Shortening -2.6 VDS VDD=3.6V -1.4 V -2.0 Mode Voltage Nch ON-Voltage of COUT Vol 1 Iol=50µA, VDD=4.8V 0.4 V 0.5 Pch ON-Voltage of COUT Vон1 Ioh=-50µA, VDD=3.9V 3.4 3.7 V Nch ON-Voltage of DOUT V VoL2 Iol=50µA, V<sub>DD</sub>=2.0V 0.2 0.5 $(V_{DET2} \ge 2.1V)$ Nch ON-Voltage of DOUT Vol2 Iol=50µA, V<sub>DD</sub>=1.9V 0.2 0.5 V $(V_{DET2} < 2.1V)$ 3.7 Pch ON-Voltage of DOUT VoH2 Ioh=-50µA, VDD=3.9V 3.4 V VDD=3.9V, V- =0V 3.0 Supply Current ldd 6.0 μA Standby Current Istandby VDD=2.0V 0.5 μA $(V_{DET2} \ge 2.1V)$

NO. EA-357-160617

| R5487LxxxKP Electrical Characteristics                                      |        |                                                          | Unless otherwise provided, Ta=25° |                   |                            |        |
|-----------------------------------------------------------------------------|--------|----------------------------------------------------------|-----------------------------------|-------------------|----------------------------|--------|
| ltem                                                                        | Symbol | Conditions                                               | Min.                              | Тур.              | Max.                       | Unit   |
| Maximum Operating<br>Voltage for Inhibition of<br>Charger                   | Vnochg | Voltage Defined as<br>VDD-Vss, VDD-V-=4V                 | 0.8                               | 1.2               | 1.6                        | V      |
| Over-charge Threshold<br>Voltage                                            | VDET1  | R1=330Ω<br>R1=330Ω, Ta=-20°C to 60°C <sup>*Note2</sup>   | Vdet1-0.020<br>Vdet1-0.025        | Vdet1<br>Vdet1    | Vdet1+0.020<br>Vdet1+0.025 | V<br>V |
| Released voltage from<br>Over-charge                                        | VREL1  | R1=330Ω                                                  | V <sub>REL1</sub> -0.05           | V <sub>REL1</sub> | V <sub>REL</sub> +0.05     | V      |
| Output Delay of<br>Over-charge                                              | tVDET1 | VDD=3.6V→4.65V                                           | 0.7                               | 1.0               | 1.3                        | s      |
| Release Delay for VD1                                                       | tVREL1 | V <sub>DD</sub> =4.65V→3.6V                              | 11                                | 16                | 21                         | ms     |
| Over-discharge Threshold                                                    | VDET2  | Detect falling edge of<br>supply voltage                 | Vdet2-0.035                       | V <sub>DET2</sub> | Vdet2+0.035                | V      |
| Released Voltage from<br>Over-discharge                                     | VREL2  | Detect rising edge of supply voltage                     | V <sub>REL2</sub> × 0.975         | V <sub>REL2</sub> | V <sub>REL2</sub> × 1.025  | V      |
| Output Delay of<br>Over-discharge<br>$(V_{DET2} \ge 2.1V)$                  | tVDET2 | V <sub>DD</sub> =3.6V→2.0V                               | 14                                | 20                | 26                         | ms     |
| Output Delay of<br>Over-discharge<br>(V <sub>DET2</sub> < 2.1V)             | tVDET2 | V <sub>DD</sub> =3.6V→1.9V                               | 14                                | 20                | 26                         | ms     |
| Release Delay for VD2 $(V_{DET2} \ge 2.1V)$                                 | tVREL2 | V <sub>DD</sub> =2.0V→3.6V                               | 0.7                               | 1.2               | 1.7                        | ms     |
| Release Delay for VD2<br>(V <sub>DET2</sub> < 2.1V)                         | tVREL2 | V <sub>DD</sub> =1.9V→3.6V                               | 0.7                               | 1.2               | 1.7                        | ms     |
| Excess discharge-current threshold (V <sub>DET3</sub> ≤ 0.05V)              | VDET3  | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V     | Vdet3-0.005                       | Vdet3             | Vdet3+0.005                | V      |
| Excess discharge-current<br>threshold<br>(0.05V < V <sub>DET3</sub> < 0.1V) | Vdet3  | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V     | Vdet3 × 0.9                       | Vdet3             | Vdet3 × 1.1                | V      |
| Excess discharge-current threshold $(V_{DET3} \ge 0.1V)$                    | Vdet3  | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V     | Vdet3-0.010                       | Vdet3             | Vdet3+0.010                | V      |
| Released Voltage from<br>Excess discharge-current                           | Vrel3  | Detect falling edge of<br>'V-' pin voltage. VDD<br>=3.1V | 1.82                              | 1.935             | 2.05                       | V      |
| Output delay of excess discharge-current                                    | tVDET3 | VDD=3.1V, V-=0V to [ Vshort<br>× 0.77-0.01V ]            | 8                                 | 12                | 16                         | ms     |
| Output delay of release<br>from excess discharge-<br>current                | tVREL3 | VDD=3.1V, V-=3.1V to 0V                                  | 0.7                               | 1.2               | 1.7                        | ms     |
| Short Protection Voltage                                                    | Vshort | VDD=3.1V                                                 | Vshort<br>×0.75                   | Vshort            | Vshort<br>× 1.25           | V      |

#### . . . .

NO. EA-357-160617

| ltem                                                               | Symbol            | Conditions                                            | Min.                     | Тур.  | Max.                     | Unit |
|--------------------------------------------------------------------|-------------------|-------------------------------------------------------|--------------------------|-------|--------------------------|------|
| Delay Time for Short<br>Protection                                 | tshort            | VDD=3.1V, V-=0V to 0.5V                               | 180                      | 250   | 425                      | μs   |
| Reset Resistance for<br>Excess Current Protection                  | Rshort            | VDD=3.6V,V- =1.0V                                     | 18                       | 22    | 26                       | kΩ   |
| Excess charge-current<br>Threshold<br>(V <sub>DET4</sub> > -0.05V) | Vdet4             | Detect falling edge of<br>'V-' pin voltage. VDD =3.1V | V <sub>DET4</sub> -0.005 | Vdet4 | V <sub>DET4</sub> +0.005 | v    |
| Excess charge-current<br>Threshold<br>(V <sub>DET4</sub> ≤ -0.05V) | Vdet4             | Detect falling edge of<br>'V-' pin voltage. VDD =3.1V | Vdet4 × 1.1              | Vdet4 | V <sub>DET4</sub> × 0.9  | v    |
| Output delay of excess charge-current                              | tVDET4            | VDD=3.1V, V-=0V to -1V                                | 5                        | 8     | 11                       | ms   |
| Output delay of release<br>from excess charge-<br>current          | tVREL4            | VDD=3.1V, V-=-1V to 0V                                | 0.7                      | 1.2   | 1.7                      | ms   |
| Delay Time Shortening<br>Mode Voltage                              | Vds               | VDD=3.6V                                              | -2.6                     | -2.0  | -1.4                     | V    |
| Nch ON-Voltage of COUT                                             | VoL1              | lol=50μA, VDD=4.8V                                    |                          | 0.4   | 0.5                      | V    |
| Pch ON-Voltage of COUT                                             | VoH1              | loh=-50μA, VDD=3.9V                                   | 3.4                      | 3.7   |                          | V    |
| Nch ON-Voltage of DOUT $(V_{DET2} \ge 2.1V)$                       | V <sub>oL</sub> 2 | lol=50μΑ, V <sub>DD</sub> =2.0V                       |                          | 0.2   | 0.5                      | V    |
| Nch ON-Voltage of DOUT<br>(V <sub>DET2</sub> < 2.1V)               | VoL2              | IoI=50μΑ, V <sub>DD</sub> =1.9V                       |                          | 0.2   | 0.5                      | V    |
| Pch ON-Voltage of DOUT                                             | VoH2              | loh=-50μA, VDD=3.9V                                   | 3.4                      | 3.7   |                          | V    |
| Supply Current                                                     | Idd               | VDD=3.9V, V- =0V                                      |                          | 3.0   | 6.0                      | μA   |
| Standby Current<br>(V <sub>DET2</sub> ≥ 2.1V)                      | Istandby          | V <sub>DD</sub> =2.0V                                 |                          |       | 0.5                      | μA   |
| Standby Current<br>(V <sub>DET2</sub> < 2.1V)                      | Istandby          | V <sub>DD</sub> =1.9V                                 |                          |       | 0.5                      | μA   |

NO. EA-357-160617

| R5487LxxxKQ Electrical Characteristics                                      |                     |                                                           | Unless otherwise provided, Ta=25°C |                   |                            |        |
|-----------------------------------------------------------------------------|---------------------|-----------------------------------------------------------|------------------------------------|-------------------|----------------------------|--------|
| ltem                                                                        | Symbol              | Conditions                                                | Min.                               | Тур.              | Max.                       | Unit   |
| Minimum Operating<br>Voltage for 0V Charging                                | Vst                 | Voltage Defined as<br>VDD-V-, VDD-Vss=0V                  |                                    |                   | 1.8                        | V      |
| Over-charge Threshold Voltage                                               | VDET1               | R1=330Ω<br>R1=330Ω, Ta=-20°C to 60°C <sup>*Note2</sup>    | VDET1-0.020<br>VDET1-0.025         | Vdet1<br>Vdet1    | VDET1+0.020<br>VDET1+0.025 | V<br>V |
| Output Delay of<br>Over-charge                                              | tVDET1              | VDD=3.6V→4.65V                                            | 0.7                                | 1.0               | 1.3                        | s      |
| Release Delay for VD1                                                       | tVREL1              | V <sub>DD</sub> =4.0V,V-=0V→0.2V                          | 11                                 | 16                | 21                         | ms     |
| Over-discharge Threshold                                                    | VDET2               | Detect falling edge of<br>supply voltage                  | Vdet2-0.035                        | V <sub>DET2</sub> | Vdet2+0.035                | V      |
| Output Delay of<br>Over-discharge<br>$(V_{DET2} \ge 2.1V)$                  | tVDET2              | V <sub>DD</sub> =3.6V→2.0V                                | 14                                 | 20                | 26                         | ms     |
| Output Delay of<br>Over-discharge<br>(V <sub>DET2</sub> < 2.1V)             | tVDET2              | V <sub>DD</sub> =3.6V→1.9V                                | 14                                 | 20                | 26                         | ms     |
| Release Delay for VD2<br>(V <sub>DET2</sub> ≥ 2.1V)                         | tVREL2              | V <sub>DD</sub> =2.0V→3.6V                                | 0.7                                | 1.2               | 1.7                        | ms     |
| Release Delay for VD2<br>(V <sub>DET2</sub> < 2.1V)                         | tV <sub>REL</sub> 2 | V <sub>DD</sub> =1.9V→3.6V                                | 0.7                                | 1.2               | 1.7                        | ms     |
| Excess discharge-current threshold $(V_{DET3} \le 0.05V)$                   | Vdet3               | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V      | Vdet3-0.005                        | Vdet3             | Vdet3+0.005                | V      |
| Excess discharge-current<br>threshold<br>(0.05V < V <sub>DET3</sub> < 0.1V) | Vdet3               | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V      | V <sub>DET3</sub> × 0.9            | Vdet3             | Vdet3 × 1.1                | V      |
| Excess discharge-current threshold $(V_{DET3} \ge 0.1V)$                    | Vdet3               | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V      | Vdet3-0.010                        | Vdet3             | Vdet3+0.010                | V      |
| Released Voltage from<br>Excess discharge-current                           | Vrel3               | Detect falling edge of<br>'V-' pin voltage. VDD<br>=3.1V  | 1.82                               | 1.935             | 2.05                       | V      |
| Output delay of excess discharge-current                                    | tVDET3              | V <sub>DD</sub> =3.1V, V-=0V to [ Vshort<br>×0.77-0.01V ] | 8                                  | 12                | 16                         | ms     |
| Output delay of release<br>from excess discharge-<br>current                | tVrel3              | VDD=3.1V, V-=3.1V to 0V                                   | 0.7                                | 1.2               | 1.7                        | ms     |
| Short Protection Voltage                                                    | Vshort              | VDD=3.1V                                                  | Vshort<br>×0.75                    | Vshort            | Vshort<br>× 1.25           | V      |
| Delay Time for Short<br>Protection                                          | tshort              | VDD=3.1V, V-=0V to 0.5V                                   | 180                                | 250               | 425                        | μs     |
| Reset Resistance for<br>Excess Current Protection                           | Rshort              | VDD=3.6V,V- =1.0V                                         | 18                                 | 22                | 26                         | kΩ     |

NO. EA-357-160617

## R5487LxxxKQ Electrical Characteristics (Continued) Unless otherwise provided, Ta=25°C

| ltem                                                               | Symbol            | Conditions                                            | Min.                    | Тур.  | Max.                    | Unit |
|--------------------------------------------------------------------|-------------------|-------------------------------------------------------|-------------------------|-------|-------------------------|------|
| Excess charge-current<br>Threshold<br>(V <sub>DET4</sub> > -0.05V) | Vdet4             | Detect falling edge of<br>'V-' pin voltage. VDD =3.1V | Vdet4-0.005             | Vdet4 | Vdet4+0.005             | V    |
| Excess charge-current<br>Threshold<br>(V <sub>DET4</sub> ≤ -0.05V) | Vdet4             | Detect falling edge of<br>'V-' pin voltage. VDD =3.1V | V <sub>DET4</sub> × 1.1 | Vdet4 | V <sub>DET4</sub> × 0.9 | v    |
| Output delay of excess charge-current                              | tVDET4            | V <sub>DD</sub> =3.1V, V-=0V to -1V                   | 5                       | 8     | 11                      | ms   |
| Output delay of release<br>from excess charge-<br>current          | tVREL4            | VDD=3.1V, V-=-1V to 0V                                | 0.7                     | 1.2   | 1.7                     | ms   |
| Delay Time Shortening<br>Mode Voltage                              | Vds               | VDD=3.6V                                              | -2.6                    | -2.0  | -1.4                    | V    |
| Nch ON-Voltage of COUT                                             | VoL1              | lol=50μA, V <sub>DD</sub> =4.8V                       |                         | 0.4   | 0.5                     | V    |
| Pch ON-Voltage of COUT                                             | VoH1              | loh=-50μA, VDD=3.9V                                   | 3.4                     | 3.7   |                         | V    |
| Nch ON-Voltage of DOUT $(V_{DET2} \ge 2.1V)$                       | VoL2              | lol=50μΑ, V <sub>DD</sub> =2.0V                       |                         | 0.2   | 0.5                     | V    |
| Nch ON-Voltage of DOUT<br>(V <sub>DET2</sub> < 2.1V)               | V <sub>oL</sub> 2 | lol=50μΑ, V <sub>DD</sub> =1.9V                       |                         | 0.2   | 0.5                     | V    |
| Pch ON-Voltage of DOUT                                             | V <sub>oH</sub> 2 | loh=-50μA, V <sub>DD</sub> =3.9V                      | 3.4                     | 3.7   |                         | V    |
| Supply Current                                                     | Idd               | VDD=3.9V, V- =0V                                      |                         | 3.0   | 6.0                     | μA   |
| Standby Current<br>(V <sub>DET2</sub> ≥ 2.1V)                      | Istandby          | V <sub>DD</sub> =2.0V                                 |                         |       | 0.1                     | μA   |
| Standby Current<br>(V <sub>DET2</sub> < 2.1V)                      | Istandby          | V <sub>DD</sub> =1.9V                                 |                         |       | 0.1                     | μA   |

NO. EA-357-160617

| R5487LxxxSD Electric                                                        | Unless otherwise provided, Ta= |                                                                    |                            |                   |                            |        |
|-----------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------|----------------------------|-------------------|----------------------------|--------|
| Item                                                                        | Symbol                         | Conditions                                                         | Min.                       | Тур.              | Max.                       | Unit   |
| Minimum Operating<br>Voltage for 0V Charging                                | Vst                            | Voltage Defined as<br>V <sub>DD</sub> -V-, V <sub>DD</sub> -Vss=0V |                            |                   | 1.8                        | V      |
| Over-charge Threshold<br>Voltage                                            | VDET1                          | R1=330Ω<br>R1=330Ω, Ta=-20°C to 60°C <sup>*Note2</sup>             | Vdet1-0.020<br>Vdet1-0.025 | Vdet1<br>Vdet1    | Vdet1+0.020<br>Vdet1+0.025 | V<br>V |
| Released voltage from<br>Over-charge                                        | VREL1                          | R1=330Ω                                                            | V <sub>REL1</sub> -0.05    | V <sub>REL1</sub> | V <sub>REL</sub> +0.05     | V      |
| Output Delay of<br>Over-charge                                              | tVdet1                         | V <sub>DD</sub> =3.6V→4.65V                                        | 0.7                        | 1.0               | 1.3                        | S      |
| Release Delay for VD1                                                       | tVREL1                         | V <sub>DD</sub> =4.65V→3.6V                                        | 11                         | 16                | 21                         | ms     |
| Over-discharge Threshold                                                    | VDET2                          | Detect falling edge of<br>supply voltage                           | Vdet2-0.035                | VDET2             | Vdet2+0.035                | V      |
| Released Voltage from<br>Over-discharge                                     | VREL2                          | Detect rising edge of<br>supply voltage                            | V <sub>REL2</sub> × 0.975  | V <sub>REL2</sub> | V <sub>REL2</sub> × 1.025  | V      |
| Output Delay of<br>Over-discharge<br>$(V_{DET2} \ge 2.1V)$                  | tVDET2                         | V <sub>DD</sub> =3.6V→2.0V                                         | 14                         | 20                | 26                         | ms     |
| Output Delay of<br>Over-discharge<br>(V <sub>DET2</sub> < 2.1V)             | tVDET2                         | V <sub>DD</sub> =3.6V→1.9V                                         | 14                         | 20                | 26                         | ms     |
| Release Delay for VD2<br>(V <sub>DET2</sub> ≥ 2.1V)                         | tV <sub>REL</sub> 2            | V <sub>DD</sub> =2.0V→3.6V                                         | 0.7                        | 1.2               | 1.7                        | ms     |
| Release Delay for VD2<br>(V <sub>DET2</sub> <2.1V)                          | tVREL2                         | V <sub>DD</sub> =1.9V→3.6V                                         | 0.7                        | 1.2               | 1.7                        | ms     |
| Excess discharge-current threshold (V <sub>DET3</sub> ≦0.05V)               | Vdet3                          | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V               | Vdet3-0.005                | V <sub>DET3</sub> | Vdet3+0.005                | V      |
| Excess discharge-current<br>threshold<br>(0.05V < V <sub>DET3</sub> < 0.1V) | Vdet3                          | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V               | Vdet3 × 0.9                | Vdet3             | Vdet3 × 1.1                | V      |
| Excess discharge-current threshold $(V_{DET3} \ge 0.1V)$                    | Vdet3                          | Detect rising edge of<br>'V-' pin voltage. VDD =3.1V               | Vdet3-0.010                | Vdet3             | Vdet3+0.010                | V      |
| Output delay of excess discharge-current                                    | tVDET3                         | V <sub>DD</sub> =3.1V, V-=0V to [ Vshort<br>×0.77-0.01V ]          | 85                         | 128               | 171                        | ms     |
| Output delay of release<br>from excess discharge-<br>current                | tVREL3                         | V <sub>DD</sub> =3.1V, V-=3.1V to 0V                               | 0.7                        | 1.2               | 1.7                        | ms     |
| Short Protection Voltage                                                    | Vshort                         | V <sub>DD</sub> =3.1V                                              | Vshort<br>×0.75            | Vshort            | Vshort<br>× 1.25           | V      |
| Delay Time for<br>Short Protection                                          | tshort                         | V <sub>DD</sub> =3.1V, V-=0V to 0.5V                               | 180                        | 250               | 425                        | μs     |
| Reset Resistance for<br>Excess Current Protection                           | Rshort                         | V <sub>DD</sub> =3.6V,V- =1.0V                                     | 14                         | 20.5              | 27                         | kΩ     |

NO. EA-357-160617

| ltem                                                      | Symbol            | Conditions                                            | Min.        | Тур.  | Max.        | Unit |
|-----------------------------------------------------------|-------------------|-------------------------------------------------------|-------------|-------|-------------|------|
| Excess charge-current<br>Threshold<br>(VDET4 > -0.05V)    | Vdet4             | Detect falling edge of<br>'V-' pin voltage. VDD =3.1V | Vdet4-0.005 | Vdet4 | Vdet4+0.005 | V    |
| Excess charge-current<br>Threshold<br>(VDET4 ≤ -0.05V)    | Vdet4             | Detect falling edge of<br>'V-' pin voltage. VDD =3.1V | Vdet4 × 1.1 | Vdet4 | Vdet4 × 0.9 | V    |
| Output delay of excess charge-current                     | tVDET4            | V <sub>DD</sub> =3.1V, V-=0V to -1V                   | 12          | 17    | 22          | ms   |
| Output delay of release<br>from excess charge-<br>current | tVREL4            | V <sub>DD</sub> =3.1V, V-=-1V to 0V                   | 0.7         | 1.2   | 1.7         | ms   |
| Delay Time Shortening<br>Mode Voltage                     | Vds               | V <sub>DD</sub> =3.6V                                 | -2.6        | -2.0  | -1.4        | V    |
| Nch ON-Voltage of COUT                                    | V <sub>oL</sub> 1 | lol=50μA, V <sub>DD</sub> =4.8V                       |             | 0.4   | 0.5         | V    |
| Pch ON-Voltage of COUT                                    | VoH1              | loh=-50μA, V <sub>DD</sub> =3.9V                      | 3.4         | 3.7   |             | V    |
| Nch ON-Voltage of DOUT<br>(V <sub>DET2</sub> ≥ 2.1V)      | VoL2              | IoI=50μA, V <sub>DD</sub> =2.0V                       |             | 0.2   | 0.5         | V    |
| Nch ON-Voltage of DOUT<br>(V <sub>DET2</sub> < 2.1V)      | V <sub>oL</sub> 2 | lol=50μΑ, V <sub>DD</sub> =1.9V                       |             | 0.2   | 0.5         | V    |
| Pch ON-Voltage of DOUT                                    | V <sub>oH</sub> 2 | loh=-50μA, V <sub>DD</sub> =3.9V                      | 3.4         | 3.7   |             | V    |
| Supply Current                                            | Idd               | V <sub>DD</sub> =3.9V, V- =0V                         |             | 3.0   | 6.0         | μΑ   |
| Standby Current<br>(V <sub>DET2</sub> ≥ 2.1V)             | Istandby          | V <sub>DD</sub> =2.0V                                 |             |       | 0.5         | μA   |
| Standby Current<br>(V <sub>DET2</sub> < 2.1V)             | Istandby          | V <sub>DD</sub> =1.9V                                 |             |       | 0.5         | μA   |

NO. EA-357-160617

## THEORY OF OPERATION

### VD1 / Over-Charge Detector

The VD1 monitors V<sub>DD</sub> pin voltage while charge the battery pack. When the V<sub>DD</sub> voltage crosses over-charge detector threshold V<sub>DET1</sub> from a low value to a value higher than the V<sub>DET1</sub>, the VD1 can detect over-charge and an external charge control Nch MOSFET turn off with C<sub>OUT</sub> pin being at "L" level.

In terms of "Latch type" version, to reset the VD1 making the  $C_{OUT}$  pin level to "H" again after detecting overcharge, in such conditions that a time when the  $V_{DD}$  voltage is down to a level lower than over-charge voltage, by disconnecting a charger from the battery pack. Output voltage of  $C_{OUT}$  pin becomes "H", and it makes an external Nch MOSFET turn on, and charge cycle is available.

Depending on the external characteristics of external components such as FETs, just by disconnecting a charger, over-charge state may not be released. In such a case, by connecting some load, the over-charge state is released.) In other words, once over-charge is detected, even if the supply voltage becomes low enough, if a charger is continuously connected to the battery pack, recharge is not possible. Therefore this over-charge detector has no hysteresis. To judge whether or not load is connected, the built-in excess-discharge current detector is used. In other words, by connecting some load, V- pin voltage becomes equal or more than excess-discharge current detector threshold, and reset the over-charge detecting state.

In terms of "Auto Release type" version, after detecting over-charge, if V<sub>DD</sub> pin voltage is equal or lower than the released voltage from over-charge, even if a charger is connected, over-charge detector is released. Further, in case that V<sub>DD</sub> pin level is lower than the over-charge detector threshold, if a charger is removed, over-charge detector is also released. Depending on the characteristics of external components such as FETs, just by disconnecting a charger, over-charge detector may not be released, and in this case, by connecting some load, the over-charge state is released.

After detecting over-charge with the  $V_{DD}$  voltage of higher than  $V_{DET1}$ , connecting system load to the battery pack makes load current allowable through parasitic diode of external charge control FET.

The  $C_{\text{OUT}}$  level would be "H" when the  $V_{\text{DD}}$  level is down to a level below the  $V_{\text{DET1}}$  by continuous drawing of load current.

Internal fixed output delay times for over-charge detection and release from over-charge exist. Even when the  $V_{DD}$  pin level becomes equal or higher level than  $V_{DET1}$  if the  $V_{DD}$  voltage would be back to a level lower than the  $V_{DET1}$  within a time period of the output delay time, VD1 would not output a signal for turning off the charge control FET. Besides, after detecting over-charge, while the  $V_{DD}$  is lower than over-charge detector, even if a charger is removed and a load is connected, if the voltage is recovered within output delay time of release from over-charge, over-charge state is not released.

A level shifter incorporated in a buffer driver for the  $C_{OUT}$  pin makes the "L" level of  $C_{OUT}$  pin to the V- pin voltage and the "H" level of  $C_{OUT}$  pin is set to  $V_{DD}$  voltage with CMOS buffer.

### VD2 / Over-Discharge Detector

The VD2 is monitoring a V<sub>DD</sub> pin voltage. When the V<sub>DD</sub> voltage crosses the over-discharge detector threshold V<sub>DET2</sub> from a high value to a value lower than the V<sub>DET2</sub>, the VD2 can detect an over-discharge and the external discharge control Nch MOSFET turns off with the D<sub>OUT</sub> pin being at "L" level.

In terms of "Latch type" version, to reset the VD2 with the  $D_{OUT}$  pin level being "H" again after detecting over discharge, it is necessary to connect a charger to the battery pack. When the  $V_{DD}$  voltage stays under overdischarge detector threshold  $V_{DET2}$ , charge-current can flow through parasitic diode of an external discharge control MOSFET, then after the  $V_{DD}$  voltage comes up to a value larger than  $V_{DET2}$ , then,  $D_{OUT}$  becomes "H" and discharging process would be able to advance through ON state MOSFET for discharge control.

NO. EA-357-160617

Connecting a charger to the battery pack makes the  $D_{OUT}$  level being "H" instantaneously when the  $V_{DD}$  voltage is higher than  $V_{DET2}$ .

In terms of "Auto Release type" version, released operation by connecting a charger is same as the other latch type. However, without a charger, if  $V_{DD}$  pin voltage is equal or more than the released voltage from overdischarge,  $D_{OUT}$  pin becomes "H" immediately.

When a cell voltage equals to zero, "acceptable type" version: if the voltage of a charger is equal or more than 0V-charge minimum voltage limit (Vst), Cout pin becomes "H" and a system is allowable to charge.

"Unacceptable type" version: if  $V_{DD}$  voltage is less than charger inhibit maximum voltage (V<sub>nochg</sub>), even if a charger is connected,  $C_{OUT}$  level will be fixed at "L", and charge current will be cut off.

An output delay time for over-discharge detection is fixed internally. When the  $V_{DD}$  level is down to equal or lower level than  $V_{DET2}$  if the  $V_{DD}$  voltage would be back to a level higher than the  $V_{DET2}$  within a time period of the output delay time, VD2 would not output a signal for turning off the discharge control FET. Output delay time for release from over-discharge is also set.

After detecting over-discharge by VD2, "Latch type" version: supply current would be reduced and be into standby by halting unnecessary circuits and consumption current of IC itself is made as small as possible. (Max.  $0.1\mu$ A at V<sub>DD</sub>=2.0V)

"Auto Release type" version: supply current would be reduced and be into standby by halting circuits except the over-discharge released by voltage function. (Max.  $0.5\mu$ A at V<sub>DD</sub>=2.0V)

The output type of DOUT pin is CMOS having "H" level of VDD and "L" level of Vss.

#### VD3 /Excess discharge-current Detector, Short Circuit Protector

Both of the excess current detector and short circuit protection can work when the both of control FETs are in "ON" state.

When the V- pin voltage is up to a value between the short protection voltage (V<sub>short</sub>) /V<sub>DD</sub> and excess discharge-current threshold V<sub>DET3</sub>, VD3 operates and further soaring of V- pin voltage higher than V<sub>short</sub> makes the short circuit protector enabled. This leads the external discharge control Nch MOSFET turns off with the D<sub>OUT</sub> pin being at "L" level. An output delay time for the excess discharge-current detector is internally fixed. A quick recovery of V- pin level from a value between V<sub>short</sub> and V<sub>DET3</sub> within the delay time keeps the discharge control FET staying "H" state. Output delay time for Release from excess discharge-current detection is also set.

When the short circuit protector is enabled, the  $D_{OUT}$  would be "L" and the delay time (Typ. 1.2ms) is also set. The V- pin has a built-in pull-down resistor (Rshort) to the Vss pin, that is, the resistance to release from excessdischarge current.

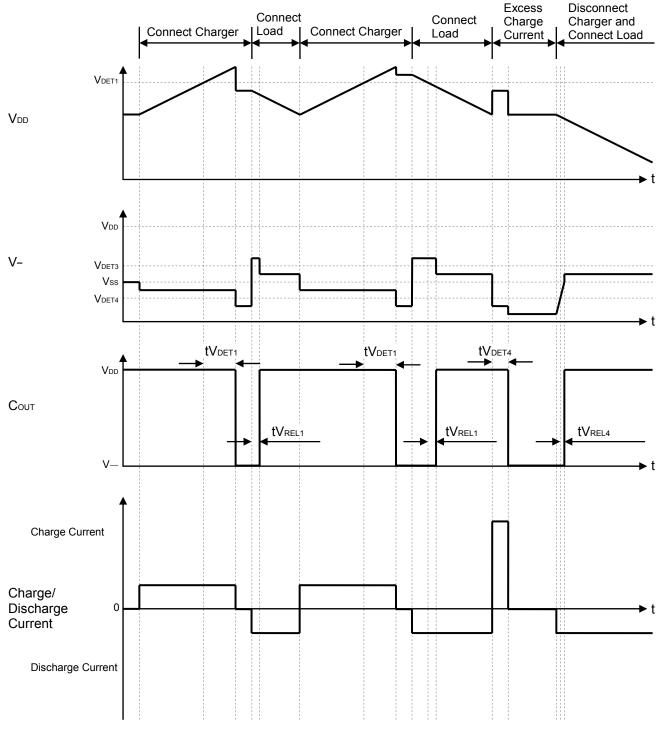
After an excess discharge-current or short circuit protection is detected, removing a cause of excess dischargecurrent or external short circuit makes an external discharge control FET to an "ON" state automatically with the V- pin level being down to the Vss level through built-in pulled down resistor. The reset resistor of excess discharge-current is off at normal state. Only when detecting excess discharge-current or short circuit, the resistor is on.

Output delay time of excess discharge-current is set shorter than the delay time for over-discharge detector. Therefore, if  $V_{DD}$  voltage would be lower than  $V_{DET2}$  at the same time as the excess discharge-current is detected, the R5487 are at excess discharge-current detection mode. By disconnecting a load, VD3 is automatically released from excess discharge-current.

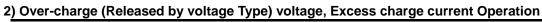
NO. EA-357-160617

#### VD4 /Excess charge-current detector

When the battery pack is chargeable and discharge is also possible, VD4 senses V- pin voltage. For example, in case that a battery pack is charged by an inappropriate charger, an excess current flows, then the voltage of V- pin becomes equal or less than excess charge-current detector threshold. Then, the output of C<sub>OUT</sub> becomes "L", and prevents from flowing excess current in the circuit by turning off the external Nch MOSFET. Output delay of excess charge-current is internally fixed. Even the voltage level of V- pin becomes equal or lower than the excess charge-current detector threshold, the voltage is higher than the VD4 threshold within the delay time, and the excess charge current is not detected. Output delay for the release from excess charge current (Typ. 1.2ms) is also set.


VD4 can be released with disconnecting a charger and connecting a load.

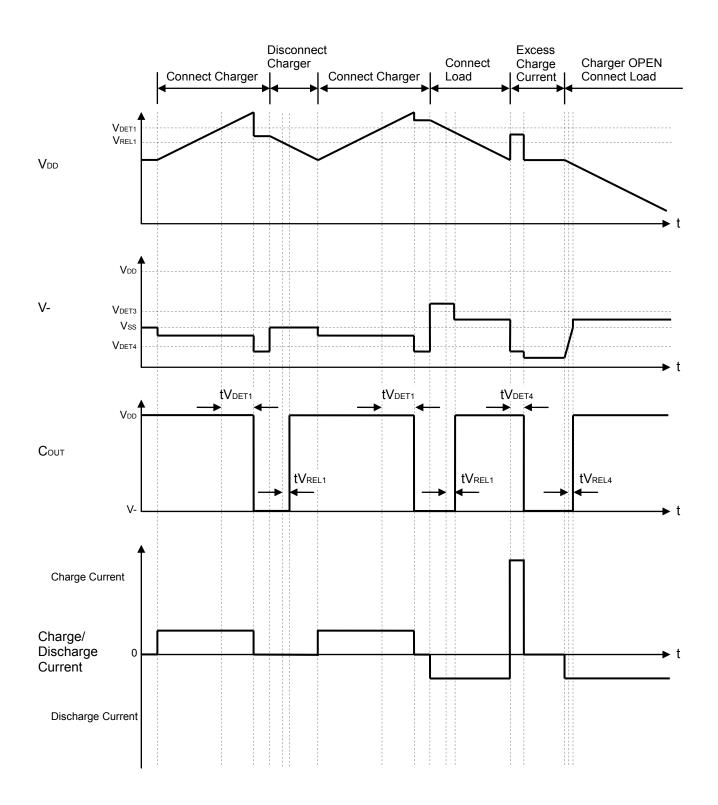
#### **DS (Delay Shorten) function**


Output delay time of over-charge, over-discharge, and release from those detecting modes can be shorter than those setting value by forcing equal or less than the delay shortening mode voltage (Typ. -2.0V) to V- pin.

NO. EA-357-160617

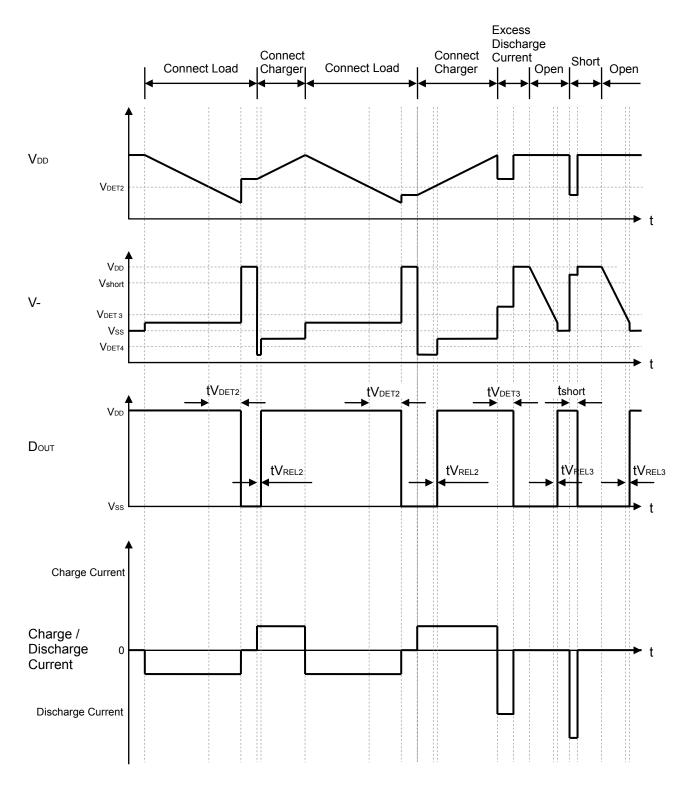
#### **TIMING CHART**



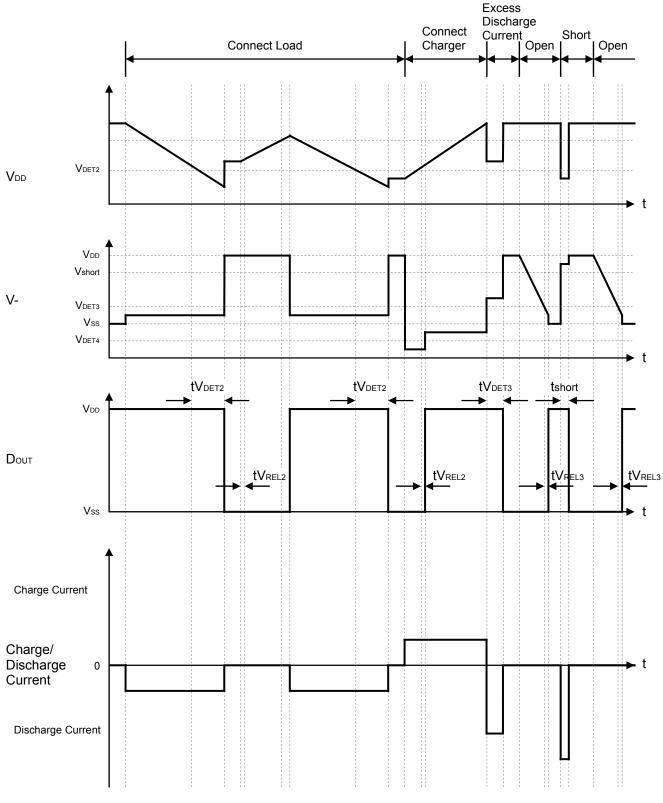

#### 1) Timing diagram of over-charge (Latch type) voltage and over-charge current



**RICOH** 


22

NO. EA-357-160617

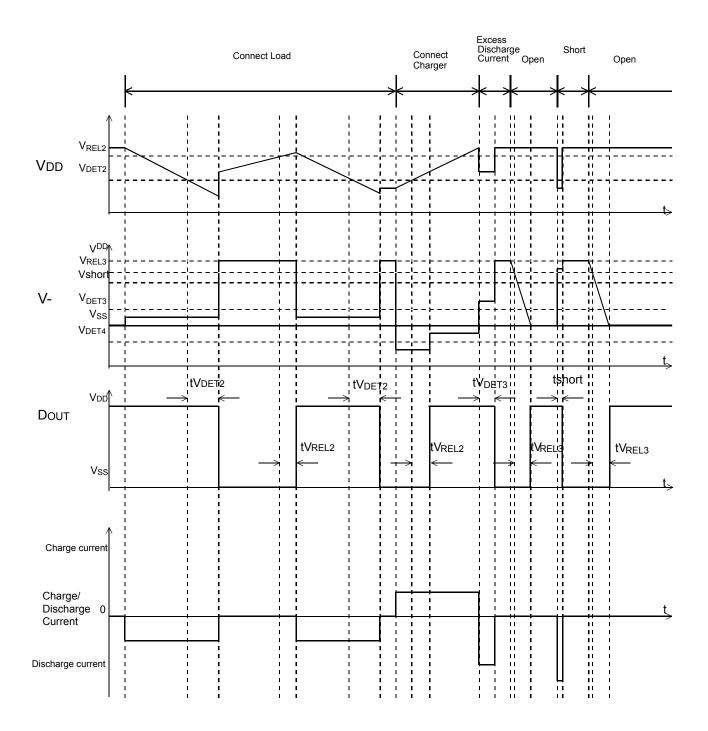



NO. EA-357-160617

#### 3) Over-discharge (Latch Type), Excess discharge current, Short circuit



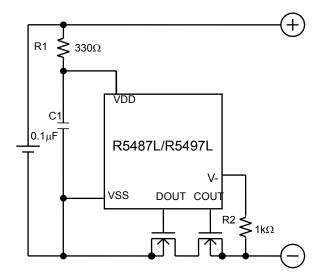
NO. EA-357-160617




## 4) Over-discharge (Released by Voltage Type), Excess discharge current (Latch Type), Short circuit



NO. EA-357-160617


5) Over-discharge (Released by Voltage Type), Excess discharge current (Auto Release Type), Short circuit



NO. EA-357-160617

## **APPLICATION INFORMATION**

**Typical Application Circuit** 



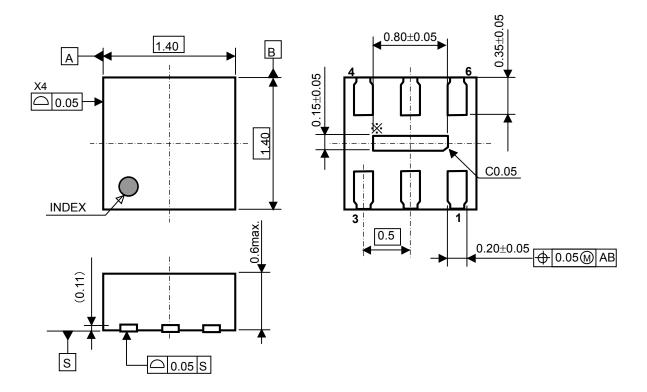
R1 and C1 stabilize a supply voltage to the R5487L/R5497L. A recommended R1 value is equal or less than  $1k\Omega$ . A large value of R1 makes detection voltage shift higher because of the conduction current flowed in the R5487L/R5497L. Further, to stabilize the operation of the R5487L/R5497L, use the C1 with the value in the range from 0.01uF to 0.1uF. To choose the most suitable value of C1, fully evaluation is necessary.

R1 and R2 can operate as a current limit against setting cell reverse direction or applying excess charge voltage to the R5487. While small value of R1 and R2 may cause over power dissipation rating of the R5487L/R5497L, therefore a total of "R1+R2" should be  $1k\Omega$  or more. Besides, if a large value of R2 is set, release from over-discharge by connecting a charger might not be possible.

In the case of "R5487L/R5497Lxxx\$M", "R5487L/R5497Lxxx\$Q", "R5487L/R5497Lxxx\$P", k", recommended R2 value is equal or less than  $1k\Omega$ . The recommended R2 value is  $1k\Omega$ . In the case of

"R5487L/R5497Lxxx\$D" and "R5487L/R5497Lxxx\$F", recommended R2 value is equal or less than  $10k\Omega$ . The recommended R2 value is  $10k\Omega$ .

The typical application circuit diagram is just an example. This circuit performance largely depends on the PCB layout and external components. In the actual application, fully evaluation is necessary.

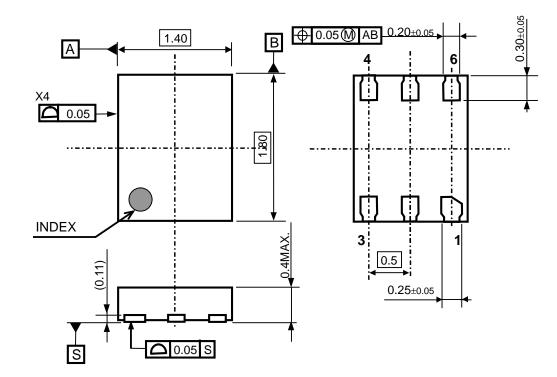

Over-voltage and the over current beyond the absolute maximum rating should not be forced to the protection IC and external components. If the positive terminal and the negative terminal of the battery pack are short, even though the short protection circuit is built in the IC, during the delay time until detecting the short circuit, a large current may flow through the FET. Select an FET with large enough current capacity in order to endure the large current during the delay time.

We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire-containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.

## PACKAGE DIMENSIONS

## DFN1414-6B

Ver. A




#### DFN1414-6B Package Dimensions (Unit: mm)

## PACKAGE DIMENSIONS

## DFN1814-6B

Ver. A





- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.



Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

## **RICOH** RICOH ELECTRONIC DEVICES CO., LTD.

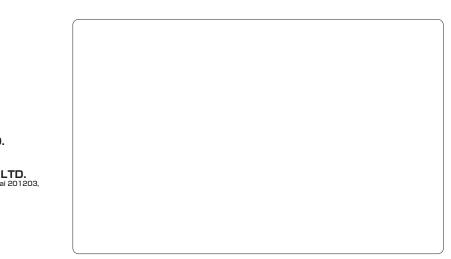
http://www.e-devices.ricoh.co.jp/en/

#### Sales & Support Offices

RICOH ELECTRONIC DEVICES CO., LTD. Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V. Semiconductor Support Centre Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309

**BICOH INTERNATIONAL B.V. - German Branch** Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany Phone: +49-211-6546-0


RICOH ELECTRONIC DEVICES KOREA CO., LTD. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

RICOH ELECTRONIC DEVICES SHANGHAI CO., LTD.

Room 403, No.2 Building, No.690 Bibo Road, Pu Dong People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

## RICOH ELECTRONIC DEVICES CO., LTD.

Taipei office Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.) Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623



## **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Ricoh Electronics: <u>R5486K511CM-TR</u> R5497L501KF-TR



#### ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.



Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

#### www.lifeelectronics.ru