

#### Is Now Part of



# ON Semiconductor®

# To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <a href="www.onsemi.com">www.onsemi.com</a>. Please email any questions regarding the system integration to Fairchild <a href="guestions@onsemi.com">guestions@onsemi.com</a>.

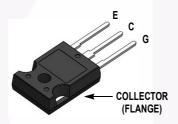
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

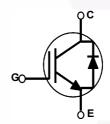


October 2014

## FGH40N60SMD 600 V, 40 A Field Stop IGBT

#### **Features**


- Maximum Junction Temperature : T<sub>J</sub> = 175°C
- Positive Temperaure Co-efficient for Easy Parallel Operating
- · High Current Capability
- Low Saturation Voltage:  $V_{CE(sat)}$  = 1.9 V(Typ.) @  $I_C$  = 40 A
- · High Input Impedance
- Fast Switching: E<sub>OFF</sub> = 6.5 uJ/A
- · Tighten Parameter Distribution
- · RoHS Compliant


#### **Applications**

· Solar Inverter, UPS, Welder, PFC, Telecom, ESS

#### **General Description**

Using novel field stop IGBT technology, Fairchild's new series of field stop 2<sup>nd</sup> generation IGBTs offer the optimum performance for solar inverter, UPS, welder, telecom, ESS and PFC applications where low conduction and switching losses are essential.





### **Absolute Maximum Ratings**

| Symbol              | Description                                                             |                          | Ratings     | Unit |
|---------------------|-------------------------------------------------------------------------|--------------------------|-------------|------|
| V <sub>CES</sub>    | Collector to Emitter Voltage                                            |                          | 600         | V    |
| V <sub>GES</sub>    | Gate to Emitter Voltage                                                 |                          | ± 20        | V    |
|                     | Transient Gate to Emitter Voltage                                       |                          | ± 30        | V    |
| la                  | Collector Current                                                       | @ T <sub>C</sub> = 25°C  | 80          | Α    |
| I <sub>C</sub>      | Collector Current                                                       | @ T <sub>C</sub> = 100°C | 40          | A    |
| I <sub>CM (1)</sub> | Pulsed Collector Current @ T <sub>C</sub> = 25°C                        |                          | 120         | A    |
| I <sub>F</sub>      | Diode Forward Current                                                   | @ T <sub>C</sub> = 25°C  | 40          | Α    |
|                     | Diode Forward Current                                                   | @ T <sub>C</sub> = 100°C | 20          | Α    |
| I <sub>FM (1)</sub> | Pulsed Diode Maximum Forward Current                                    |                          | 120         | Α    |
| P <sub>D</sub>      | Maximum Power Dissipation                                               | @ T <sub>C</sub> = 25°C  | 349         | W    |
| טי                  | Maximum Power Dissipation                                               | @ T <sub>C</sub> = 100°C | 174         | W    |
| TJ                  | Operating Junction Temperature                                          |                          | -55 to +175 | °C   |
| T <sub>stg</sub>    | Storage Temperature Range                                               |                          | -55 to +175 | °C   |
| T <sub>L</sub>      | Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds |                          | 300         | °C   |

#### Notes

1: Repetitive rating: Pulse width limited by max. junction temperature

#### **Thermal Characteristics**

| Symbol                 | Parameter                               | Тур. | Max. | Unit |
|------------------------|-----------------------------------------|------|------|------|
| $R_{\theta JC}(IGBT)$  | Thermal Resistance, Junction to Case    | -    | 0.43 | °C/W |
| $R_{\theta JC}(Diode)$ | Thermal Resistance, Junction to Case    | -    | 1.5  | °C/W |
| $R_{\theta JA}$        | Thermal Resistance, Junction to Ambient | -    | 40   | °C/W |

## **Package Marking and Ordering Information**

| Part Number | Top Mark    | Package | Packing<br>Method | Reel Size | Tape Width | Quantity |
|-------------|-------------|---------|-------------------|-----------|------------|----------|
| FGH40N60SMD | FGH40N60SMD | TO-247  | Tube              | N/A       | N/A        | 30       |

## Electrical Characteristics of the IGBT T<sub>C</sub> = 25°C unless otherwise noted

| Symbol                                 | Parameter                                    | Test Conditions                                                          | Min. | Тур. | Max.  | Unit |
|----------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|------|------|-------|------|
| Off Charac                             | teristics                                    |                                                                          |      |      |       |      |
| BV <sub>CES</sub>                      | Collector to Emitter Breakdown Voltage       | $V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$                          | 600  | -    | -     | V    |
| $\frac{\Delta BV_{CES}}{\Delta T_{J}}$ | Temperature Coefficient of Breakdown Voltage | $V_{GE} = 0 \text{ V, } I_{C} = 250 \mu\text{A}$                         | -    | 0.6  | -     | V/°C |
| I <sub>CES</sub>                       | Collector Cut-Off Current                    | $V_{CE} = V_{CES}, V_{GE} = 0 V$                                         | - \  | , -  | 250   | μА   |
| I <sub>GES</sub>                       | G-E Leakage Current                          | $V_{GE} = V_{GES}, V_{CE} = 0 V$                                         | -    | -    | ± 400 | nA   |
| On Charac                              | teristics                                    |                                                                          |      |      |       |      |
| V <sub>GE(th)</sub>                    | G-E Threshold Voltage                        | $I_C = 250  \mu A,  V_{CE} = V_{GE}$                                     | 3.5  | 4.5  | 6.0   | V    |
| ()                                     |                                              | I <sub>C</sub> = 40 A, V <sub>GE</sub> = 15 V                            | -    | 1.9  | 2.5   | V    |
| V <sub>CE(sat)</sub>                   | Collector to Emitter Saturation Voltage      | I <sub>C</sub> = 40 A, V <sub>GE</sub> = 15 V,<br>T <sub>C</sub> = 175°C | -    | 2.1  | -     | V    |
| Dynamic C                              | haracteristics                               |                                                                          | •    |      |       |      |
| C <sub>ies</sub>                       | Input Capacitance                            | V <sub>CE</sub> = 30 V, V <sub>GE</sub> = 0 V,                           | -    | 1880 | -     | pF   |
| C <sub>oes</sub>                       | Output Capacitance                           |                                                                          | -    | 180  | -     | pF   |
| C <sub>res</sub>                       | Reverse Transfer Capacitance                 | f = 1 MHz                                                                | -    | 50   | -     | pF   |
| Switching                              | Characteristics                              |                                                                          |      |      |       |      |
| t <sub>d(on)</sub>                     | Turn-On Delay Time                           |                                                                          | -    | 12   | 16    | ns   |
| t <sub>r</sub>                         | Rise Time                                    |                                                                          | -    | 20   | 28    | ns   |
| t <sub>d(off)</sub>                    | Turn-Off Delay Time                          | V <sub>CC</sub> = 400 V, I <sub>C</sub> = 40 A,                          | -    | 92   | 120   | ns   |
| t <sub>f</sub>                         | Fall Time                                    | $R_G = 6 \Omega$ , $V_{GE} = 15 V$ ,                                     | -    | 13   | 17    | ns   |
| E <sub>on</sub>                        | Turn-On Switching Loss                       | Inductive Load, T <sub>C</sub> = 25°C                                    | -    | 0.87 | 1.30  | mJ   |
| E <sub>off</sub>                       | Turn-Off Switching Loss                      |                                                                          | -    | 0.26 | 0.34  | mJ   |
| E <sub>ts</sub>                        | Total Switching Loss                         |                                                                          | -    | 1.13 | 1.64  | mJ   |
| t <sub>d(on)</sub>                     | Turn-On Delay Time                           |                                                                          | -    | 15   | -     | ns   |
| t <sub>r</sub>                         | Rise Time                                    |                                                                          | -    | 22   | -     | ns   |
| t <sub>d(off)</sub>                    | Turn-Off Delay Time                          | V <sub>CC</sub> = 400 V, I <sub>C</sub> = 40 A,                          | -    | 116  | -     | ns   |
| t <sub>f</sub>                         | Fall Time                                    | $R_G = 6 \Omega$ , $V_{GE} = 15 V$ ,                                     | -    | 16   | -     | ns   |
| E <sub>on</sub>                        | Turn-On Switching Loss                       | Inductive Load, T <sub>C</sub> = 175°C                                   | -    | 0.97 | -     | mJ   |
| E <sub>off</sub>                       | Turn-Off Switching Loss                      |                                                                          | -    | 0.60 | -     | mJ   |
| E <sub>ts</sub>                        | Total Switching Loss                         |                                                                          | -    | 1.57 | -     | mJ   |

## **Electrical Characteristics of the IGBT** (Continued)

| Symbol          | Parameter                | Test Conditions                                                           | Min. | Тур. | Max | Unit |
|-----------------|--------------------------|---------------------------------------------------------------------------|------|------|-----|------|
| $Q_g$           | Total Gate Charge        | V <sub>CE</sub> = 400 V, I <sub>C</sub> = 40 A,<br>V <sub>GE</sub> = 15 V | -    | 119  | 180 | nC   |
| Q <sub>ge</sub> | Gate to Emitter Charge   |                                                                           | -    | 13   | 20  | nC   |
| Q <sub>gc</sub> | Gate to Collector Charge |                                                                           | -    | 58   | 90  | nC   |

## Electrical Characteristics of the Diode T<sub>C</sub> = 25°C unless otherwise noted

| Symbol           | Parameter                       | Test Conditions                                           |                                  | Min. | Тур. | Max | Unit |
|------------------|---------------------------------|-----------------------------------------------------------|----------------------------------|------|------|-----|------|
| V <sub>FM</sub>  | Diode Forward Voltage           | I <sub>E</sub> = 20 A                                     | $T_{\rm C} = 25^{\rm o}{\rm C}$  | -    | 2.3  | 2.8 | V    |
| V FM             | Blode Forward Vellage           | 1F 2071                                                   | $T_{\rm C} = 175^{\rm o}{\rm C}$ | -    | 1.67 | -   |      |
| E <sub>rec</sub> | Reverse Recovery Energy         |                                                           | T <sub>C</sub> = 175°C           | -    | 48.9 | -   | uJ   |
| t <sub>rr</sub>  | Diode Reverse Recovery Time     | $I_F = 20 \text{ A}, dI_F/dt = 200 \text{ A/}\mu\text{s}$ | $T_C = 25^{\circ}C$              | / -  | 36   | -   | ns   |
|                  |                                 |                                                           | $T_{\rm C} = 175^{\rm o}{\rm C}$ | -    | 110  | -   |      |
| Q <sub>rr</sub>  | Diode Reverse Recovery Charge   |                                                           | $T_C = 25^{\circ}C$              | -    | 46.8 | -   | nC   |
| ~ I              | 2.000 riororos riosorory emange |                                                           | $T_{\rm C} = 175^{\rm o}{\rm C}$ | -    | 445  | -   |      |

**Figure 1. Typical Output Characteristics** 

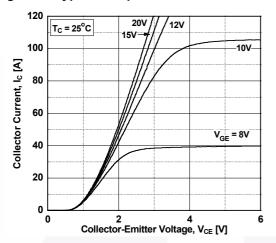



Figure 3. Typical Saturation Voltage Characteristics

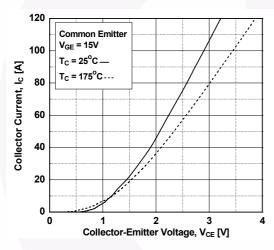
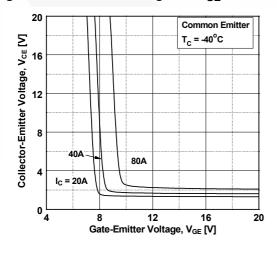




Figure 5. Saturation Voltage vs. V<sub>GE</sub>



**Figure 2. Typical Output Characteristics** 

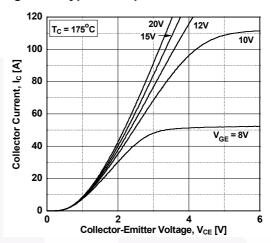



Figure 4. Saturation Voltage vs. Case
Temperature at Variant Current Level

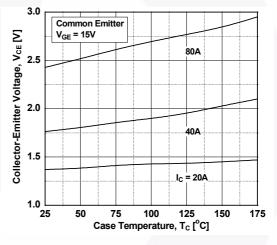



Figure 6. Saturation Voltage vs. V<sub>GE</sub>

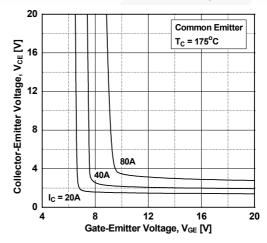



Figure 7. Capacitance Characteristics

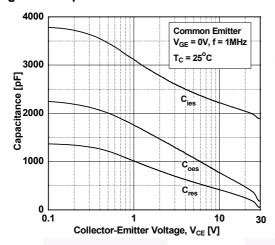



Figure 8. Gate charge Characteristics

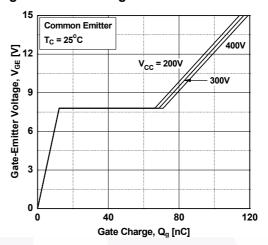



Figure 9. Turn-on Characteristics vs.
Gate Resistance

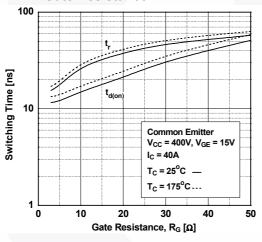



Figure 10. Turn-off Characteristics vs.
Gate Resistance

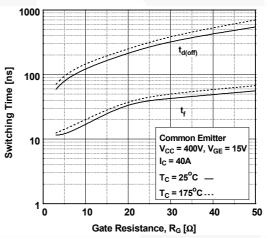



Figure 11. Switching Loss vs.
Gate Resistance

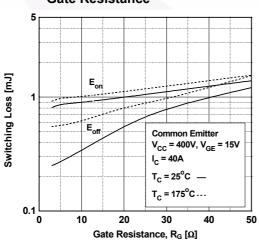



Figure 12. Turn-on Characteristics vs. Collector Current

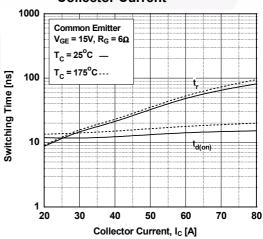



Figure 13. Turn-off Characteristics vs. Collector Current

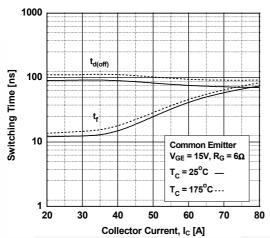



Figure 15. Load Current Vs. Frequency

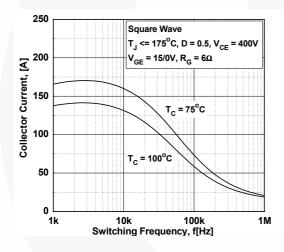



Figure 17. Forward Characteristics

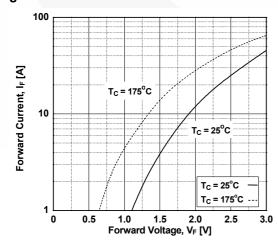



Figure 14. Switching Loss vs. Collector Current

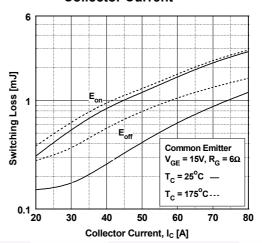



Figure 16. SOA Characteristics

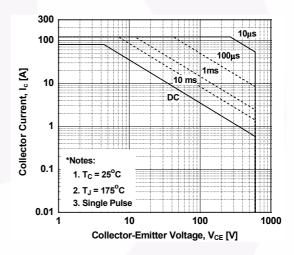



Figure 18. Reverse Recovery Current

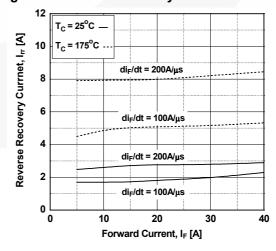



Figure 19. Reverse Recovery Time

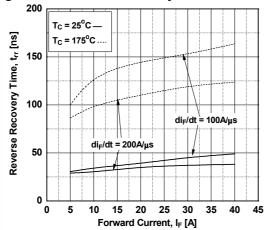



Figure 20. Stored Charge




Figure 21. Transient Thermal Impedance of IGBT

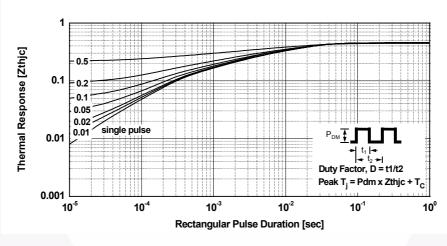
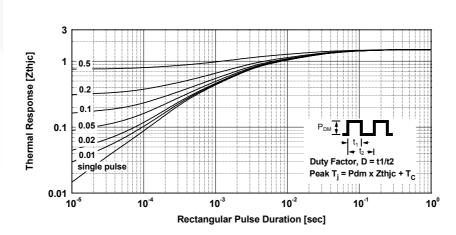
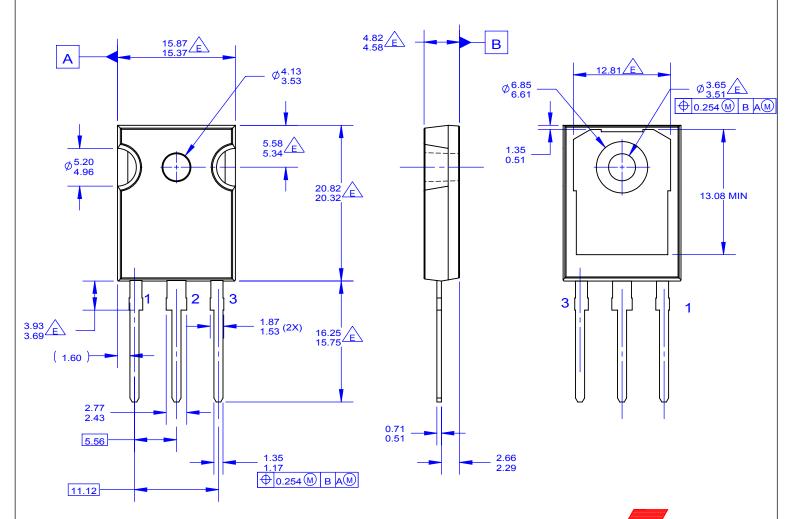





Figure 22. Time Transient Thermal Impedance of Diode







#### NOTES: UNLESS OTHERWISE SPECIFIED.

- A. PACKAGE REFERENCE: JEDEC TO-247, ISSUE E, VARIATION AB, DATED JUNE, 2004.
- B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- C. ALL DIMENSIONS ARE IN MILLIMETERS.
- D. DRAWING CONFORMS TO ASME Y14.5 1994

DOES NOT COMPLY JEDEC STANDARD VALUE

F. DRAWING FILENAME: MKT-TO247A03\_REV04

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdt/Patent-Marking.pdf">www.onsemi.com/site/pdt/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see any inability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ex

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

FGH40N60SMD



OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

#### Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.



Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru