

Polmaddie6 User Manual

Issue -2.2

Foreword

PLEASE READ THIS ENTIRE MANUAL BEFORE PLUGGING IN OR POWERING UP YOUR POLMADDIE6 BOARD. PLEASE TAKE SPECIAL NOTE OF THE WARNINGS WITHIN THIS MANUAL.

Trademarks

Altera, Quartus II, Max10 and NIOS are the registered trademarks of Altera Inc, San Jose, California, US.

Polmaddie6 is a trademark of Enterpoint Ltd.

CONTENTS

Foreword	2
<u>Trademarks</u>	2
Introduction	4
Polmaddie6 Features	5
Getting Started	6
Polmaddie Features	7
Power Input	7
<u>Io Headers</u>	8
FPGA	10
Oscillator	10
Leds	11
Switches	12
<u>USB Interface</u>	13
Programming Polmaddie6	14
Mechanical Arrangement	15
Medical and Safety Critical Use	16
Warranty	16
Support	16

Introduction

Welcome to your Polmaddie6 board. Polmaddie is Enterpoint's low cost product range that offers an economical way to begin programming with CPLDs and FPGAs.

Polmaddie6 features Altera's low cost MAX10, which is highly flexible and facilitates development of simple microprocessor systems based on Altera's NIOS processor.

The aim of this manual is to assist in using the main features of Polmaddie6.

The Polmaddie6 board comes in several variants based on different devices. Polmaddie6 is based on an Altera Max10 10M08SAE144C8G FPGA. Should you require a board based on another member of the MAX10 family:

 $\frac{\text{http://www.altera.com/literature/br/br-max10-brochure.pdf?GSA pos=6\&WT.oss r=1\&WT.oss=max10}{\text{please contact } \underline{\text{Enterpoint sales}}} \text{ for a quote.}$

Figure 1 – Polmaddie6 Board

Polmaddie6 features

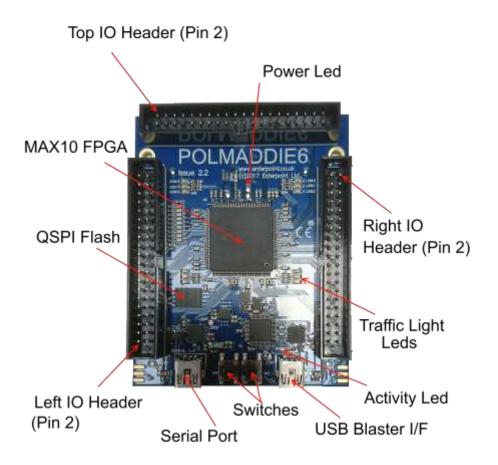


Figure 2 – Polmaddie6 Features

Getting Started

Your Polmaddie6 will be supplied pre-programmed with a 'traffic lights' test design. The test design will allow the user to determine that the LEDs and the push button switches of the Polmaddie6 board are working. To use this test you should:

- (1) Apply power to the Polmaddie6 board by plugging a cable into either of the USB sockets from a USB power supply adapter or a PC Cable.
- (2) The LEDs should light in a 'traffic lights' sequence. There is also Power indicator LED which will light to show that power is present and the 3.3V regulator is working.
- (3) Press SW2 (This is the left Push Button switch). The traffic lights sequence will be held in reset until the switch is released.
- (4) Press SW1 (This is the right Push Button switch). The traffic lights sequence will be held in reset until the switch is released.

Power Input

Polmaddie6 is powered by plugging a cable into the either of the USB sockets. The power can be either from a USB power supply adapter or a PC.

The USB 5V supply is used to power the USB interface and to supply a voltage regulator producing 3.3V to power the FPGA, the LEDs and the oscillator. 3.3V is also available on pin 2 of each of the IO headers. If you decide to use this as a source of power for external circuitry please remember that the maximum total power available from the 3.3V Regulator is 1.2 Amps.

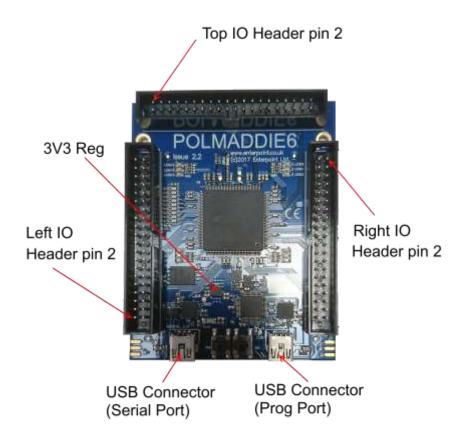


Figure 3 – Polmaddie Power Supply Features.

WARNING – THE REGULATORS MAY BECOME HOT IN NORMAL OPERATION ALONG WITH THE BOARDS THERMAL RELIEF. PLEASE DO NOT TOUCH OR PLACE HIGHLY FLAMABLE MATERIALS NEAR THESE DEVICES WHILST THE POLMADDIE6 BOARD IS IN OPERATION.

IO Headers

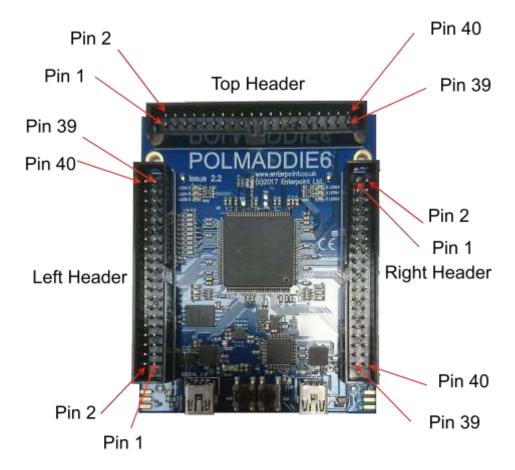


Figure 4 – Polmaddie 6 Headers

The three 40-pin IDC Headers provide a simple mechanical and electrical interface for external signal inputs. The connectors on this header are on a 0.1inch (2.54mm), pitch and allow other electronic circuitry or user-designed add-on boards to be connected.

The headers each have 20 IOs routed to the FPGA. These are **NOT** 5V tolerant, the maximum input voltage should be limited to 3.3V. IO21 is a dedicated Analog input. All the other IO can be used as digital inputs or outputs. The headers each also have a permanent positive power pin on pin 2 and 19 permanent 0V connections as shown below:

Digital IO

Max 10 digital IO are either High Speed or Low Speed. In the table below High Speed IO are shown shaded blue (pins 26 to 119) and Low Speed IO are shaded yellow (pins 6-25 and 120-132). More information about the IO specifications and capabilities is available . http://www.altera.co.uk/literature/lit-max-10.jsp

	LEFT HEADER					TOP HEADER			RIGHT HEADER					
PIN	USE	FPGA PIN	PIN	USE	PIN	USE	FPGA PIN	PIN	USE	PIN	USE	FPGA PIN	PIN	USE
1	IO40	33	2	3.3V	1	IO20	132	2	3.3V	1	IO60	93	2	3.3V
3	IO39	32	4	0V	3	IO19	131	4	0V	3	IO59	92	4	0V
5	IO38	30	6	0V	5	IO18	130	6	0V	5	IO58	91	6	0V
7	IO37	29	8	0V	7	IO17	127	8	0V	7	IO57	90	8	0V
9	IO36	28	10	0V	9	IO16	124	10	0V	9	IO56	89	10	0V
11	IO35	26	12	0V	11	IO15	123	12	0V	11	IO55	87	12	0V
13	IO34	25	14	0V	13	IO14	120	14	0V	13	IO54	86	14	0V
15	IO33	24	16	0V	15	IO13	119	16	0V	15	IO53	85	16	0V
17	IO32	22	18	0V	17	IO12	118	18	0V	17	IO52	84	18	0V
19	IO31	21	20	0V	19	IO11	114	20	0V	19	IO51	81	20	0V
21	IO30	17	22	0V	21	IO10	113	22	0V	21	IO50	80	22	0V
23	IO29*	14	24	0V	23	109	112	24	0V	23	IO49	79	24	0V
25	IO28*	13	26	0V	25	IO8	111	26	0V	25	IO48	78	26	0V
27	IO27*	12	28	0V	27	107	110	28	0V	27	IO47	77	28	0V
29	IO26*	11	30	0V	29	106	106	30	0V	29	IO46	76	30	0V
31	IO25*	10	32	0V	31	IO5	100	32	0V	31	IO45	69	32	0V
33	IO24*	8	34	0V	33	104	99	34	0V	33	IO44	66	34	0V
35	IO23*	7	36	0V	35	IO3	98	36	0V	35	IO43	65	36	0V
37	IO22*	6	38	0V	37	102	97	38	0V	37	IO42	64	38	0V
39	IO21*	3	40	0V	39	IO1	96	40	0V	39	IO41	62	40	0V

^{*}these signals have series 470 resistors and 10pf capacitors to ground so they can be used as analog inputs.

Analog Inputs

The Max10 device has one dedicated analog input (IO21) and eight optional analog/digital IO. When they are used for analog signals IO 22 to 29 are single ended inputs connecting to a 12 bit ADC with a maximum sampling rate of 1MHz. The maximum input voltage is 3.3V. More information about the Max10 analog capability can be found in http://www.altera.co.uk/literature/hb/max-10/ug_m10_adc.pdf from www.altera.com.

FPGA

The main device on the Polmaddie6 is the Altera Max10 10M08SAE144C8G FPGA. Device documentation can be obtained from:

http://www.altera.co.uk/literature/lit-max-10.jsp

Oscillator

The oscillator on Polmaddie6 is a 3.3V, 25MHz ASEM oscillator. This clock signal is routed through the MAX V CPLD to the FPGA on **Pin 88**, which is a clock input.

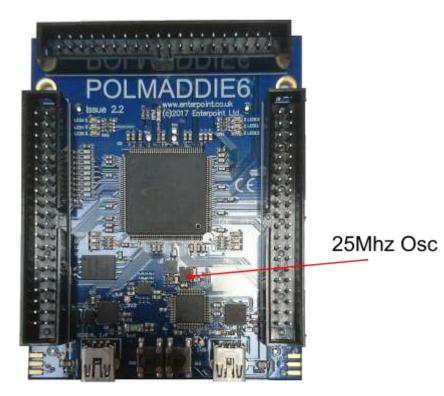


Figure 5 – Polmaddie6 Oscillator

LEDs

Polmaddie6 has 14 LEDs.

LED 7 is a green power indicator LED and indicates the presence of the 3.3V supply. It cannot be controlled by the FPGA.

LED 14 is a green Programming I/F Activity LED which is controlled by the MAX V CPLD. It cannot be controlled by the FPGA.

LEDs 1 to 6 and 8 to 13 are arranged in 4 blocks of three, each block having one red, one orange and one green LED. This means they can be used to simulate traffic lights. They are all controlled by the FPGA. They connect to the FPGA as shown below:

LED	FPGA PIN	COLOUR	LED	FPGA PIN	COLOUR
LED3	41	RED	LED10	75	RED
LED1	39	ORANGE	LED8	74	ORANGE
LED2	38	GREEN	LED9	70	GREEN
LED6	135	RED	LED13	105	RED
LED4	140	ORANGE	LED11	102	ORANGE
LED5	141	GREEN	LED12	101	GREEN

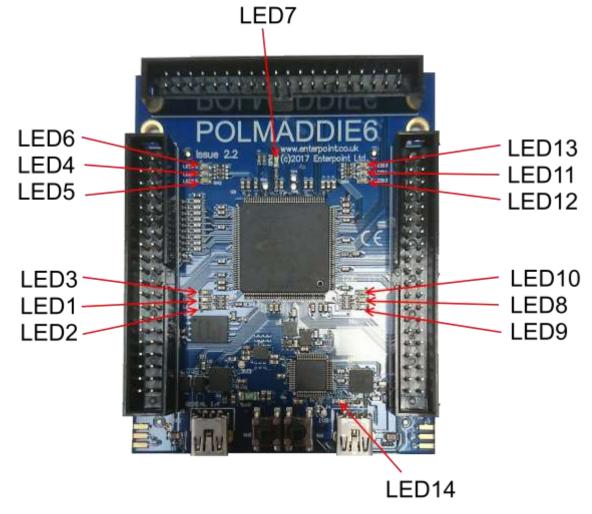


Figure 6 – Polmaddie6 LEDs

Switches

Polmaddie6 has two push button switches; to use these switches the IO pins connected to the switches must have a pull up resistor setting in the constraints file. This means that when a switch is activated a low level signal will be detected on the FPGA pin.

The two switches are connected to the following IO pins:

SW1	SW2		
PIN_60	PIN_61		

Figure 7 – Polmaddie6 Switches

USB Interface

The USB Serial interface on the Polmaddie6 is achieved using an FT232R USB to serial UART interface. The datasheet and drivers for this device are available from http://www.ftdichip.com. When appropriate drivers are installed the Polmaddie6 USB port should be detected as a serial port. Alternative data optimised drivers are also available from FTDI. The FT232R is connected to the FPGA and provides a simple UART interface i9ncluding hardware flow control. This allows a host computer to communicate to the MAX 10 FPGA using a simple serial protocol.

The connections between the USB Serial device and the FPGA are shown below:

FT232R PIN	FT232R PORT FUNCTION	FPGA PIN
30	TXD	56
2	RXD	54
32	RTS#	55
8	CTS#	52

Programming Polmaddie6

The programming of the FPGA on Polmaddie6 can be achieved using the on board USB Blaster compatible Programming I/FI. Quartus Prime Programming Software will detect the Polmaddie6 as a USB Blaster allowing direct programming of the MAX10 device without additional hardware. The MAX10 device will appear as a single device on the JTAG chain, however with the appropriate FPGA build programmed it is also possible to access the QSPI Flash directly from the JTAG Programming interface. The MAX 10 JTAG Interface is controlled by the MAX V and is preloaded with the USB Blaster compatible.

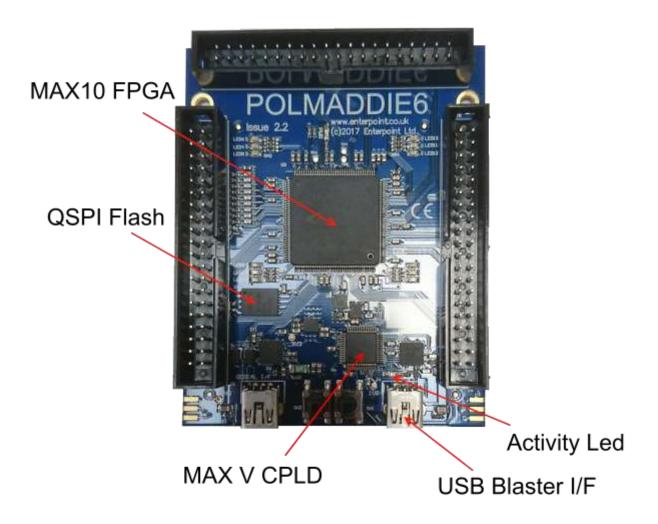


Figure 8– Polmaddie6 JTAG

Using the Quartus PRIME programmer the JTAG chain appears like this:

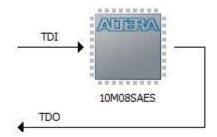


Figure 9- Polmaddie6 JTAG CHAIN

The Max10 FPGA has internal flash memory to hold the configuration data as well as User Flash Memory UFM which can be accessed and programmed by the FPGA. This UFM can be used to store user configuration information or additional program storage under the control of a NIOS CPU.

The QSPI 256Mb Flash can be accessed directly from the JTAG Programmer using the Altera QPFL IP where the QSPI device will appear as follows:

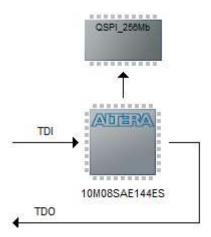


Figure 10-Polmaddie6 QSPI JTAG CHAIN

The QSPI can be used to store larger execute in place (EXIP) programs for use with the NIOS II processor or can be used as NIOS accessible Flash storage for images and data.

Mechanical Arrangement

Dimensions are in millimetres. The three 40-way connectors are arranged on a 0.1 inch grid relative to each other.

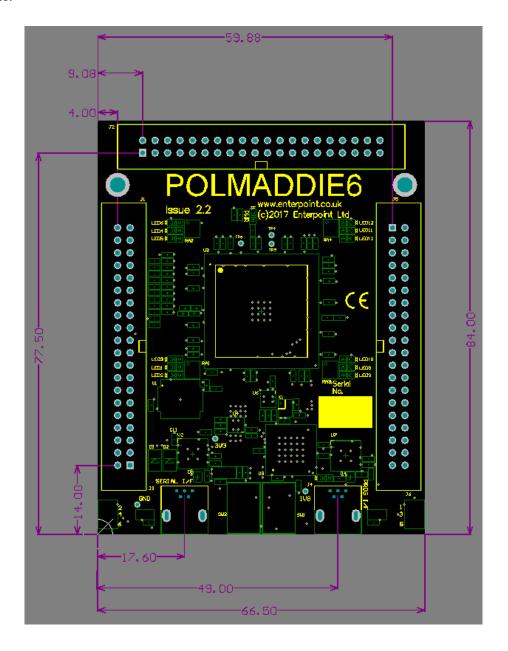


Figure 11-Polmaddie6 Mechanical Arrangement

The PCB is 1.6mm thick and the tallest components are the Boxed Headers which are approximately 10mm high. Dimensions are subject to manufacturing tolerances.

Medical and Safety Critical Use

Polmaddie6 boards are not authorised for the use in, or use in the design of, medical or other safety critical systems without the express written person of the Board of Enterpoint. If such use is allowed the said use will be entirely the responsibility of the user. Enterpoint Ltd will accepts no liability for any failure or defect of the Polmaddie6 board, or its design, when it is used in any medical or safety critical application

Warranty

Polmaddie6 comes with a 90 return to base warranty. Enterpoint reserves the right not honour a warranty if the failure is due to maltreatment of the Polmaddie6 board.

Outside the warranty period Enterpoint offers a fixed price repair or replacement service. We reserve the right not to offer this service where a Polmaddie6 has been maltreated or otherwise deliberately damaged. Please contact support if need to use this service.

Other specialised warranty programs can be offered to users of multiple Enterpoint products. Please contact sales on <u>boardsales@enterpoint.co.uk</u> if you are interested in these types of warranty,

Support

Enterpoint offers support during normal United Kingdom working hours 9.00am to 5.00pm. Please examine our Polmaddie6 FAQ web page and the contents of this manual before raising a support query. We can be contacted as follows:

Telephone - +44 (0) 121 288 3945 Email - <u>support@enterpoint.co.uk</u>

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru