SCDS049C - MARCH 1998 - REVISED MAY 1998 - 5-Ω Switch Connection Between Two Ports - TTL-Compatible Input Levels - Designed to Be Used in Level-Shifting Applications - Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages ### description The SN74CBTD16210 provides 20 bits of high-speed TTL-compatible bus switching. The low on-state resistance of the switch allows connections to be made with minimal propagation delay. A diode to $V_{\rm CC}$ is integrated in the circuit to allow for level shifting between 5-V inputs and 3.3-V outputs. The device is organized as a dual 10-bit bus switch with separate output-enable (\overline{OE}) inputs. It can be used as two 10-bit bus switches or as one 20-bit bus switch. When \overline{OE} is low, the associated 10-bit bus switch is on and A port is connected to B port. When \overline{OE} is high, the switch is open, and a high-impedance state exists between the ports. The SN74CBTD16210 is characterized for operation from –40°C to 85°C. # DGG, DGV, OR DL PACKAGE (TOP VIEW) | NC [| √ ړ | ノ ₄₈ [| 10E | |-------------------|-----|-------------------|------| | 1A1 [| 2 | 47 | 20E | | 1A2 [| 3 | 46 | 1B1 | | 1A3 [| 4 | 45 | 1B2 | | 1A4 [| 5 | 44 | 1B3 | | 1A5 [| 6 | 43 | 1B4 | | 1A6 [| 7 | 42 | 1B5 | | GND [| 8 | 41 | GND | | 1A7 [| 9 | 40 | 1B6 | | 1A8 [| 10 | 39 | 1B7 | | 1A9 [| 11 | 38 | 1B8 | | 1A10 [| 12 | 37 | 1B9 | | 2A1 [| 13 | 36 | 1B10 | | 2A2 [| 14 | 35 | 2B1 | | v _{cc} [| 15 | 34 | 2B2 | | 2A3 | 16 | 33 | 2B3 | | GND | 17 | 32 | GND | | 2A4 | 18 | 31 | 2B4 | | 2A5 | 19 | 30 | 2B5 | | 2A6 l | 20 | 29 | 2B6 | | 2A7 l | 21 | 28 | 2B7 | | 2A8 l | 22 | 27 | 2B8 | | 2A9 | 23 | 26 | 2B9 | | 2A10 | 24 | 25 | 2B10 | | | | | | NC - No internal connection ## FUNCTION TABLE (each 10-bit bus switch) | INPUT
OE | FUNCTION | | | |-------------|-----------------|--|--| | L | A port = B port | | | | Н | Z | | | Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ### logic diagram (positive logic) ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) | Supply voltage range, V _{CC} | –0.5 V to 7 V | |--|--------------------| | Input voltage range, V _I (see Note 1) | 0.5 V to 7 V | | Continuous channel current | 128 mA | | Input clamp current, I _{IK} (V _I < 0) | –50 mA | | Package thermal impedance, θ _{JA} (see Note 2): [| DGG package89°C/W | | [| DGV package 93°C/W | | Γ | DL package 94°C/W | | Storage temperature range, T _{stg} | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ### recommended operating conditions (see Note 3) | | | MIN | MAX | UNIT | |-----|----------------------------------|-----|-----|------| | VCC | Supply voltage | 4.5 | 5.5 | V | | VIH | High-level control input voltage | 2 | | V | | VIL | Low-level control input voltage | | 0.8 | V | | TA | Operating free-air temperature | -40 | 85 | °C | NOTE 3: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. ^{2.} The package thermal impedance is calculated in accordance with JESD 51. SCDS049C - MARCH 1998 - REVISED MAY 1998 # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | MIN | TYP [†] | MAX | UNIT | | |---------------------|----------------|----------------------------|------------------------------|--|------------------|-----|------|----| | VIK | | $V_{CC} = 4.5 \text{ V},$ | I _I = -18 mA | | | | -1.2 | V | | Vон | | See Figure 2 | | | | | | | | Ι _Ι | | $V_{CC} = 0 V$, | V _I = 5.5 V | | | | 10 | μΑ | | | | $V_{CC} = 5.5 \text{ V},$ | $V_I = 5.5 \text{ V or GND}$ | | | | ±1 | | | ICC | | $V_{CC} = 5.5 \text{ V},$ | I _O = 0, | $V_I = V_{CC}$ or GND | | | 1.5 | mA | | ∆lcc [‡] | Control inputs | $V_{CC} = 5.5 \text{ V},$ | One input at 3.4 V, | Other inputs at V _{CC} or GND | | | 2.5 | mA | | Ci | Control inputs | V _I = 3 V or 0 | | | | 4.5 | | pF | | C _{io(OFF} |) | $V_0 = 3 \text{ V or } 0,$ | OE = VCC | | | 5.5 | | pF | | r _{on} § | | V _{CC} = 4.5 V | V _I = 0 | I _I = 64 mA | | 5 | 7 | | | | | | | I _I = 30 mA | | 5 | 7 | Ω | | | | | V _I = 2.4 V, | I _I = 15 mA | | 35 | 50 | | [†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. # switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | MIN | MAX | UNIT | |------------------|-----------------|----------------|-----|------|------| | $t_{pd}\P$ | A or B | B or A | | 0.25 | ns | | t _{en} | ŌĒ | A or B | 1.5 | 9.8 | ns | | ^t dis | ŌĒ | A or B | 1.5 | 8.9 | ns | The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance). [‡] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND. [§] Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lowest voltage of the two (A or B) terminals. SCDS049C - MARCH 1998 - REVISED MAY 1998 ### PARAMETER MEASUREMENT INFORMATION NOTES: A. C_I includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns. - D. The outputs are measured one at a time with one transition per measurement. - E. tpl 7 and tpH7 are the same as tdis. - F. tpzL and tpzH are the same as ten. - G. tpLH and tpHL are the same as tpd. Figure 1. Load Circuit and Voltage Waveforms ### **TYPICAL CHARACTERISTICS** #### **OUTPUT VOLTAGE HIGH** Figure 2. V_{OH} Values #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 1998, Texas Instruments Incorporated OOO «ЛайфЭлектроникс" "LifeElectronics" LLC ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703 Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии. С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров ### Мы предлагаем: - Конкурентоспособные цены и скидки постоянным клиентам. - Специальные условия для постоянных клиентов. - Подбор аналогов. - Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям. - Приемлемые сроки поставки, возможна ускоренная поставка. - Доставку товара в любую точку России и стран СНГ. - Комплексную поставку. - Работу по проектам и поставку образцов. - Формирование склада под заказчика. - Сертификаты соответствия на поставляемую продукцию (по желанию клиента). - Тестирование поставляемой продукции. - Поставку компонентов, требующих военную и космическую приемку. - Входной контроль качества. - Наличие сертификата ISO. В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам. Конструкторский отдел помогает осуществить: - Регистрацию проекта у производителя компонентов. - Техническую поддержку проекта. - Защиту от снятия компонента с производства. - Оценку стоимости проекта по компонентам. - Изготовление тестовой платы монтаж и пусконаладочные работы. Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru