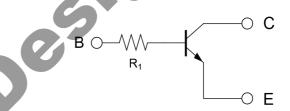
NPN 100mA 50V Digital Transistors (Bias Resistor Built-in Transistors)

Parameter	Value
$V_{\sf CEO}$	50V
I _C	100mA
R ₁	47kΩ

Features


ROHM

- 1) Built-In Biasing Resistor
- Built-in bias resistors enable the configuration of an inverter circuit without connecting external input resistors (see inner circuit).
- 3) The bias resistors consist of thin-film resistors with complete isolation to allow negative biasing of the input. They also have the advantage of completely eliminating parasitic effects.
- Only the on/off conditions need to be set for operation, making the circuit design easy.
- 5) Complementary PNP Types: DTA144T series
- 6) Complex transistors: UMH14N/ IMH14A/ EMH15/ IMH15A (NPN type)
- 7) Lead Free/RoHS Compliant.

Outline

•Inner circuit

Application

Switching circuit, Inverter circuit, Interface circuit,

Driver circuit

B: BASE

C: COLLECTOR

E: EMITTER

Packaging specifications

Part No.	Package	Package size	Taping code	Reel size (mm)	Tape width (mm)	Basic ordering unit.(pcs)	Marking
DTC144TM	VMT3	1212	T2L	180	8	8000	06
DTC144TE	EMT3	1616	TL	180	8	3000	06
DTC144TUA	UMT3	2021	T106	180	8	3000	06
DTC144TKA	SMT3	2928	T146	180	8	3000	06

● Absolute maximum ratings (T_a = 25°C)

Pa	arameter	Symbol	Values	Unit	
Collector-base voltage		V_{CBO}	V _{CBO} 50		
Collector-emitter voltage			50	V	
Emitter-base voltage	Emitter-base voltage V _{EBO} 5			V	
Collector current	Collector current I _C 100			mA	
	DTC144TM		150		
Dower discipation	DTC144TE	D *1	150		
Power dissipation	DTC144TUA	P _D *1	200	mW	
	DTC144TKA		200		
Junction temperature	T	150	°C		
Range of storage tempera	ture	T _{stg}	-55 to +150	°C	

●Electrical characteristics (T_a = 25°C)

Parameter	Symbol Conditions		Values			Unit
Parameter			Min.	Тур.	Max.	OHIL
Collector-base breakdown voltage	BV _{CBO}	$I_C = 50\mu A$	50	-	-	V
Collector-emitter breakdown voltage	BV _{CEO}	I _C = 1mA	50	-	-	V
Emitter-base breakdown voltage	BV _{EBO}	I _E = 50μA	5	-	-	V
Collector cut-off current	I _{CBO}	V _{CB} = 50V	-	-	0.5	μA
Emitter cut-off current	EBO	V _{EB} = 4V	-	-	0.5	μA
Collector-emitter saturation voltage	V _{CE(sat)}	$I_{C} / I_{B} = 5 \text{mA} / 0.5 \text{mA}$	-	-	0.3	V
DC current gain	h _{FE}	$V_{CE} = 5V$, $I_{C} = 1mA$	100	250	600	-
Input resistance	R_1	-	32.9	47	61.1	kΩ
Transition frequency	f _T *2	$V_{CE} = 10V, I_{E} = -5mA,$ f = 100MHz	-	250	-	MHz

^{*1} Each terminal mounted on a reference footprint

^{*2} Characteristics of built-in transistor

● Electrical characteristic curves(Ta=25°C)

Fig.1 Grounded emitter propagation characteristics

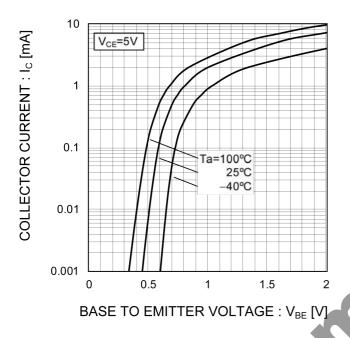


Fig.2 Grounded emitter output characteristics

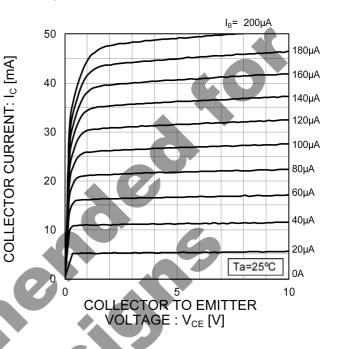
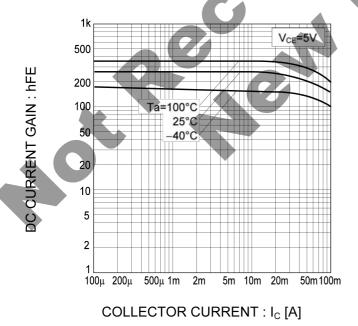
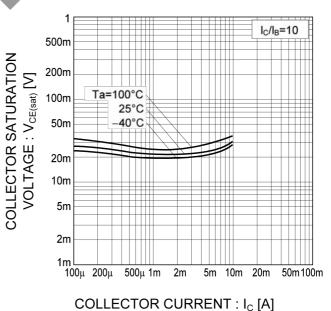
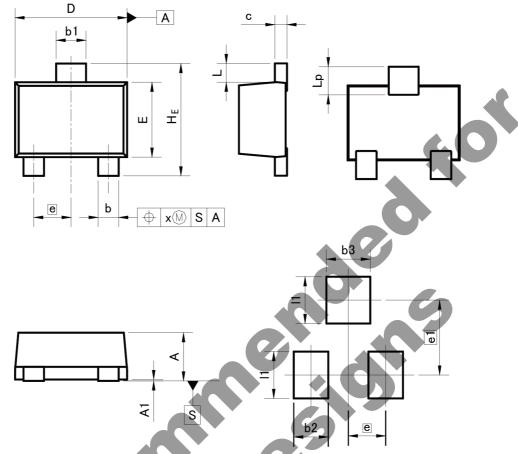


Fig.3 DC Current gain vs. Collector Current

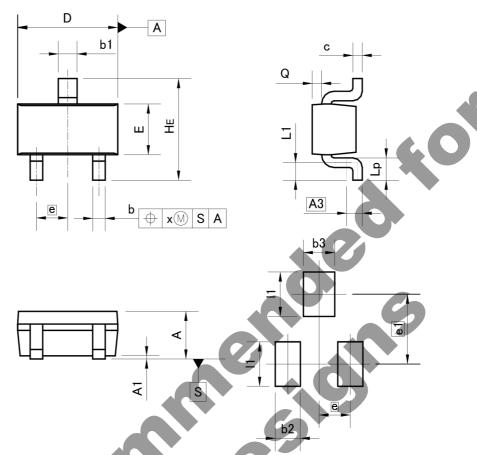




Fig.4 Collector-emitter saturation voltage vs.

Collector Current

3/7

Pattern of terminal position areas [Not a recommended pattern of soldering pads]

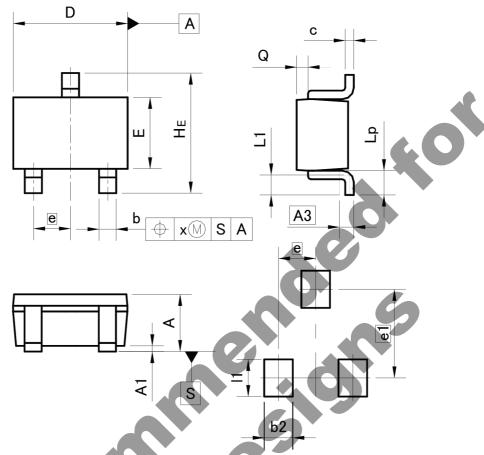

DIM	MILIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A	0.45	0.55	0.018	0.022
A1	0.00	0.10	0.000	0.004
b	0.17	0.27	0.007	0.011
b1	0.27	0.37	0.011	0.015
С	0.08	0.18	0.003	0.007
D	1.10	1.30	0.043	0.051
Ē	0.70	0.90	0.028	0.035
е	0.	40	0.0	02
HE	1.10	1.30	0.043	0.051
L	0.10	0.30	0.004	0.012
Lp	0.20	0.40	0.008	0.016
×	42	0.10	=	0.004

DIM MILIM	ETERS	INC	HES	
	MIN	MAX	MIN	MAX
b2	=	0.37		0.015
b3		0.47	100	0.019
e1	0.80		0.0	031
11	-	0.50	-	0.020

Dimension in mm/inches

EMT3

Pattern of terminal position areas [Not a recommended pattern of soldering pads]

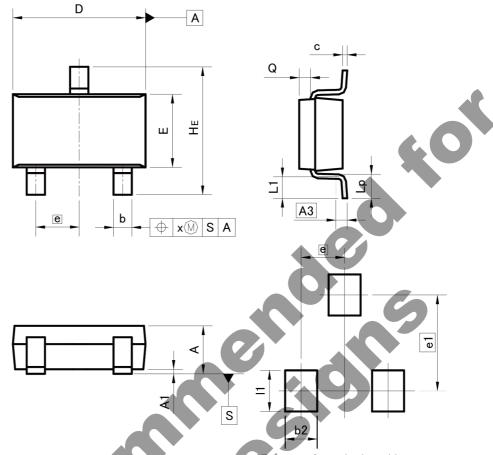

DIM	MILIME	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A	0.60	0.80	0.024	0.031
A1	0.00	0.10	0.000	0.004
A3	0.	25	0.0	10
Ь	0.15	0.30	0.006	0.012
b1	0.25	0.40	0.010	0.016
C	0.10	0.20	0.004	0.008
D	1.50	1.70	0.059	0.067
E	0.70	0.90	0.028	0.035
е	0.8	50	0.0	20
HE	1.40	1.80	0.055	0.071
L1	0.10	#8	0.004	, 3
Lp	0.15	52	0.006	EL.
Q	0.05	0.25	0.002	0.010
×	=7	0.10	= 1	0.004

DIM	DIM	MILIMETERS		INC	HES
	MIN	MAX	MIN	MAX	
b2	₹7.1t	0.40		0.016	
b3		0.50	-	0.020	
e1	1.10		0.0	043	
11	42 55	0.70	-	0.028	

Dimension in mm/inches

UMT3

Pattern of terminal position areas [Not a recommended pattern of soldering pads]


DIM	MILIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A	0.80	1.00	0.031	0.039
A1	0.00	0.10	0.000	0.004
A3	0.3	25	0.0	10
ь	0.15	0.30	0.006	0.012
С	0.10	0.20	0.004	0.008
D	1.90	2.10	0.075	0.083
E	1.15	1.35	0.045	0.053
е	0.65 0.026		026	
HE	2.00	2.20	0.079	0.087
L1	0.20	0.50	0.008	0.020
Lp	0.25	0.55	0.010	0.022
Q	0.10	0.30	0.004	0.012
×	=	0.10	=	0.004

DIM	MILIMETERS		INCHES	
	MIN	MAX	MIN	MAX
b2		0.50	_	0.020
e1	1.55		0.0	061
11	_	0.65	_	0.026

Dimension in mm/inches

SMT3

Pattern of terminal position areas [Not a recommended pattern of soldering pads]

DIM	MILIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A	1.00	1.30	0.039	0.051
(A1	0.00	0.10	0.000	0.004
A3	0	25	0.0	10
b	0.35	0.50	0.014	0.020
С	0.09	0.25	0.004	0.010
D	2.80	3.00	0.110	0.118
E	1.50	1.80	0.059	0.071
е	0.9	95	0.037	
HE	2.60	3.00	0.102	0.118
L1	0.30	0.60	0.012	0.024
Lр	0.40	0.70	0.016	0.028
Q	0.20	0.30	0.008	0.012
X	2	0.10	1 <u>20</u> 1	0.004
У	27	0.10	_	0.004
				-
DIM	MILIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
60	1505	0.00		0.004

DIM	MILIMETERS		DIM MILIMETE		INC	HES
DIM	MIN	MAX	MIN	MAX		
b2	=	0.60		0.024		
e1	2.10		0.0	083		
11	=:	0.90	-	0.035		

Dimension in mm/inches

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ROHM Semiconductor:

DTC144TETL DTC144TKAT146

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru