ROM-based low-power DisplayPort to VGA adapter

Rev. 2.2 — 16 August 2016

Product data sheet

1. General description

PTN3356R1 is a ROM-based DisplayPort to VGA adapter optimized primarily for motherboard applications, to convert a DisplayPort signal from the chip set to an analog video signal that directly connects to the VGA connector. PTN3356R1 integrates a DisplayPort receiver, a high-speed triple video digital-to-analog converter that supports a wide range of display resolutions, for example, VGA to WUXGA (see <u>Table 8</u>).

PTN3356R1 supports two DisplayPort lanes operating at either 2.7 Gbit/s or 1.62 Gbit/s per lane.

PTN3356R1 supports I²C-bus over AUX per *DisplayPort standard* (<u>Ref. 1</u>), and bridges the VESA DDC channel to the DisplayPort Interface.

PTN3356R1 is powered from a 3.3 V power supply and consumes approximately 200 mW of power for video streaming in WUXGA resolution and 410 μ W of power in Low-power mode. The VGA output is powered down when there is no valid DisplayPort source data being transmitted. PTN3356R1 also aids in monitor detection by performing load sensing on RGB lines and reporting sink connection status to the source.

2. Features and benefits

2.1 VESA-compliant DisplayPort converter

- Main Link: 1-lane and 2-lane modes supported
 - HBR (High Bit Rate) at 2.7 Gbit/s per lane
 - RBR (Reduced Bit Rate) at 1.62 Gbit/s per lane
 - ◆ BER (Bit Error Rate) better than 10⁻⁹
 - DisplayPort Link down-spreading supported
- 1 MHz AUX channel
 - Supports native AUX CH syntax
 - Supports I²C-bus over AUX CH syntax
- Active HIGH Hot Plug Detect (HPD) signal to the source

2.2 VESA-compliant eDP extensions

- Supports Alternate Scrambler Seed Reset (ASSR)
- Supports Alternate Enhanced Framing mode Enhanced Framing

2.3 DDC channel output

I²C-Over-AUX feature facilitates support of MCCS, DDC/CI, and DDC protocols (see <u>Ref. 2</u>)

ROM-based low-power DP to VGA adapter

2.4 Analog video output

- VSIS 1.2 compliance (<u>Ref. 3</u>) for supported video output modes
- Analog RGB current-source outputs
- 3.3 V VSYNC and HSYNC outputs
- Pixel clock up to 240 MHz
- Triple 8-bit Digital-to-Analog Converter (DAC)
- Direct drive of double terminated 75 Ω load with standard 700 mV (peak-to-peak) signals

2.5 General features

- Monitor presence detection through load detection scheme. Connection/disconnection reported via HPD IRQ and DPCD update.
- Wide set of display resolutions are supported¹:
 - 1920 × 1440, 60 Hz, 18 bpp, 234 MHz pixel clock rate
 - ◆ 2048 × 1152, 60 Hz (reduced blanking), 24 bpp, 162 MHz pixel clock rate
 - ◆ 2048 × 1536, 50 Hz (reduced blanking), 24 bpp, 167.2 MHz pixel clock rate
 - WUXGA: 1920 × 1200, 60 Hz, 18 bpp, 193 MHz pixel clock rate
 - WUXGA: 1920 × 1200, 60 Hz (reduced blanking), 24 bpp, 154 MHz pixel clock rate
 - UXGA: 1600 × 1200, 60 Hz, 162 MHz pixel clock rate
 - SXGA: 1280 × 1024, 60 Hz, 108 MHz pixel clock rate
 - ◆ XGA: 1024 × 768, 60 Hz, 65 MHz pixel clock rate
 - ◆ SVGA: 800 × 600, 60 Hz, 40 MHz pixel clock rate
 - VGA: 640 × 480, 60 Hz, 25 MHz pixel clock rate
 - Any resolution and refresh rates are supported from 25 MHz up to 180 MHz pixel clock rate at 24 bpp, or up to 240 MHz pixel clock rate at 18 bpp
- Bits per color (bpc) supported¹
 - 6, 8 bits supported
 - ◆ 10, 12, 16 bits supported by truncation to 8 MSBs
- All VGA colorimetry formats (RGB) supported
- Power modes (when the application design is as per Figure 4)
 - Active-mode power consumption: ~200 mW at WUXGA, 1920 × 1200, 60 Hz (18 bpc)
 - 410 μW at Low-power mode
- Supports flexible choice of timing reference
 - On-board oscillator with external crystal, ceramic resonator
 - ◆ Different frequencies supported: 24 MHz, 25 MHz, 27 MHz
- ESD protection: 7 kV HBM
- Single power supply (3.3 V) for easy integration in the platforms
- Commercial temperature range: 0 °C to 85 °C
- 32-pin HVQFN, 5 mm × 5 mm × 0.85 mm (nominal); 0.5 mm pitch; lead-free package

PTN3356R1

© NXP Semiconductors N.V. 2016. All rights reserved

^{1.} Except for color depth beyond 8 bits, display resolutions and refresh rates are only limited to those which a standard 2-lane DisplayPort configuration is able to support over 2.7 Gbit/s per lane of DP Main Link.

ROM-based low-power DP to VGA adapter

3. Applications

- Notebook computers, tablets and desktop PCs
- Dongles, adapters, docking stations

4. Ordering information

Table 1. Ordering information						
Type number Topside mark		Package				
		Name	Description	Version		
PTN3356R1BS	356R1	HVQFN32	plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; $5 \times 5 \times 0.85 \text{ mm}^{[1]}$	SOT617-3		

[1] Maximum height is 1 mm.

4.1 Ordering options

Table 2.Ordering options

	Orderable part number	Package	J J J J J J J J J J J J J J J J J J J	Minimum order quantity	Temperature
PTN3356R1BS	PTN3356R1BSMP	HVQFN32	Reel 13" Q2/T3 *standard mark SMD dry pack	6000	$T_{amb} = 0 \ ^{\circ}C \ to +85 \ ^{\circ}C$

PTN3356R1 Product data sheet

All information provided in this document is subject to legal disclaim Rev. 2.2 — 16 August 2016

> © NXP Semiconductors N.V. 2016. All rights reserved. 4 of 38

5. Functional diagram

NXP

Semiconductors

PTN3356R1 ROM-based low-power DP to VGA adapter

ROM-based low-power DP to VGA adapter

6. Pinning information

6.1 Pinning

6.2 Pin description

Symbol	Pin	Туре	Description
VDDA33_DNW	1	power	3.3 V power supply
AUX_P	2	self-biasing differential input	DisplayPort AUX channel positive input
AUX_N	3	self-biasing differential input	DisplayPort AUX channel negative input
ML0_P	4	self-biasing differential input	DisplayPort Main Link lane 0 positive input
ML0_N	5	self-biasing differential input	DisplayPort Main Link lane 0 negative input
VDDA15_DP	6	power	1.5 V power supply for DisplayPort PHY; power provided to this pin from SWOUT pin
ML1_P	7	self-biasing differential input	DisplayPort Main Link lane 1 positive input
ML1_N	8	self-biasing differential input	DisplayPort Main Link lane 1 negative input

PTN3356R1 Product data sheet

ROM-based low-power DP to VGA adapter

Symbol	Pin	Туре	Description
VDDE33_IO	9	power	3.3 V power supply for I/O
RST_N	10	3.3 V digital input	Reset input active LOW; pulled up to V _{DD(3V3)} internally
HPD	11	3.3 V digital I/O	DisplayPort Hot Plug Detection output
CFG1	12	5 V open-drain I/O	General purpose configuration pin CFG1
CFG5	13	3.3 V digital I/O	Configuration pin supporting trinary input
CFG3	14	3.3 V digital I/O	Reserved
CFG2	15	5 V open-drain I/O	General purpose configuration pin CFG2
DDC_SCL	16	5 V open-drain I/O	DDC I ² C-bus clock
VDDE33_IO	17	power	3.3 V power supply for I/O
DDC_SDA	18	5 V open-drain I/O	DDC I ² C-bus data
VSYNC	19	3.3 V 50 Ω digital I/O	Vertical sync
HSYNC	20	3.3 V 50 Ω digital I/O	Horizontal sync
BLU	21	analog output	Blue DAC analog output
GRN	22	analog output	Green DAC analog output
RSET	23	input	Resistor for DAC output reference control
RED	24	analog output	Red DAC analog output
OSC_IN	25	input	Crystal oscillator input
OSC_OUT	26	output	Crystal oscillator output
VDDA15_DAC	27	power	1.5 V power supply for DAC; power provided to this pin from SWOUT pin
VDDD15	28	power	1.5 V power supply for digital core; power provided to this pin from SWOUT pin
TESTMODE	29	input	Test mode selection for CFG/JTAG
PVDD33	30	power	3.3 V power supply for switching regulator
SWOUT	31	power	Switching regulator output
PGND	32	ground	Ground for switching regulator
GND ^[1]	-	power	central supply ground connection (exposed die pad)

[1] HVQFN32 package die supply ground is connected to exposed center pad. Exposed center pad must be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board level performance, the exposed pad must be soldered to the board using a corresponding thermal pad on the board and for proper heat conduction through the board, thermal vias must be incorporated in the PCB in the thermal pad region.

ROM-based low-power DP to VGA adapter

7. Functional description

Referring to Figure 1 "Functional diagram", the PTN3356R1 performs protocol conversion from VESA DisplayPort specification to VESA VGA output. At the physical layer, PTN3356R1 implements the advanced DisplayPort Front-end technology (Auto receive equalization, Clock Data Recovery) to support the objectives of delivering excellent Signal Integrity (SI) performance, and consuming very low power consumption. The PTN3356R1 integrates a DisplayPort receiver (according to *VESA DisplayPort standard*, Ref. 1) and a high-speed triple 8-bit video digital-to-analog converter that supports a wide range of video resolutions (see Table 8 "Display resolution and pixel clock rate^[1]"), up to a pixel clock rate of 240 MHz. The PTN3356R1 supports one or two DisplayPort Main Link lanes operating at either in 2.7 Gbit/s or 1.62 Gbit/s per lane.

PTN3356R1 comprises the following functional blocks:

- DP Main Link
- DP AUX CH (Auxiliary Channel)
- DPCD (DisplayPort Configuration Data)
- VGA monitor detection
- Video DAC

The RGB video data with corresponding synchronization references are extracted from the main stream video data. Main stream video attribute information is also extracted. This information is inserted once per video frame during the vertical blanking period by the DP source. The attributes describe the main video stream format in terms of geometry, timing, and color format. The original video clock and video stream are derived from these main link data.

The PTN3356R1 internal DPCD registers can be accessed by the DP source via the DP AUX channel. The monitor's DDC control bus may also be controlled via the DP AUX channel. PTN3356R1 implements the standard DisplayPort I²C-over-AUX protocol conversion to provide DP source access to the VGA plug DDC-I²C interface. The PTN3356R1 passes through sink-side status change (for example, hot-plug events) to the source side, through HPD interrupts and DPCD registers.

7.1 DisplayPort Main Link

The DisplayPort main link consists of two AC-coupled differential pairs. The 50 Ω termination resistors are integrated inside PTN3356R1.

The PTN3356R1 supports HBR at 2.7 Gbit/s and RBR at 1.62 Gbit/s per lane.

7.2 DisplayPort auxiliary channel (AUX CH)

The AUX CH is a half-duplex, bidirectional channel between DisplayPort source and sink. It consists of one differential pair transporting self-clocked data at 1 Mbit/s. The PTN3356R1 integrates the AUX CH replier (or slave), and responds to transactions initiated by the DisplayPort source AUX CH requester (or master).

The AUX CH uses the Manchester-II code for the self-clocked transmission of signals; every 'zero' is represented by LOW-to-HIGH transition, and 'one' represented by HIGH-to-LOW transition, in the middle of the bit time.

7.3 DPCD registers

DPCD registers that are part of the VESA DisplayPort standard are described in detail in Ref. 1. The following describes the specific implementation by PTN3356R1 only.

PTN3356R1 DisplayPort receiver capability and status information about the link are reported by DisplayPort Configuration Data (DPCD) registers, when a DP source issues a read command on the AUX CH. The DP source device can also write to the link configuration field of DPCD to configure and initialize the link. The DPCD is DisplayPort v1.2a compliant.

PTN3356R1 specific capabilities are made available to DP source in the relevant DPCD read/write registers. In line with the DisplayPort standard (<u>Ref. 1</u>), the specific Link controls are also made available to initialize and maintain the DisplayPort Link.

It is the responsibility of the DP source to issue commands only within the capability of the PTN3356R1 as defined in the 'Receiver Capability Field' in order to prevent undefined behavior. PTN3356R1 specific DPCD registers are listed in Table 4.

7.3.1 PTN3356R1 specific DPCD register settings

DPCD register [1]	Description	Power-on Reset value	Read/write over AUX CH		
Receiver C	apability Field				
0000Ch	I2C-bus speed control capabilities bit map. Speed control is00hread onlynot supported through DPCD register. Default speed of50 kbit/s is supported.00h				
0000Dh	eDP_CONFIGURATION_CAP.	03h	read only		
	Bit 0 = ALTERNATE_SCRAMBLER_RESET_CAPABLE. A setting of 1 indicates that this is an eDP device that can use the eDP alternate scrambler reset value of FFFFh.				
	Bit 1 = FRAMING_CHANGE_CAPABLE. A setting of 1 indicates that this is an eDP device that uses only Enhanced Framing independently of the setting by the source of ENHANCED_FRAME_EN.				
	Bit 2 = reserved for eDP. Read 0.				
	Bit 3 = DPCD_DISPLAY_CONTROL_CAPABLE. A setting of 1 indicates that display control registers starting at address 00700h are enabled.				
	Bits 7:4 = reserved for eDP. Read all zeros.				
Link Config	guration Field				
00109h					

Table 4. PTN3356R1 specific DPCD registers

8 of 38

ROM-based low-power DP to VGA adapter

Table 4. PTN3356R1 specific DPCD registerscontinued	
---	--

DPCD register [1]	Description	Power-on Reset value	Read/write over AUX CH
0010Ah	Bit 0 = ALTERNATE_SCRAMBLER_RESET_ENABLE. Source sets to 1 to select the alternate scrambler reset. Writes ignored if ALTERNATE_SCRAMBLER_RESET_CAPABLE = 0. Power-on default value = 0. Bit 1 = FRAMING CHANGE ENABLE. Source sets to 1 to	00h	read/write
	select the framing change. Writes ignored if FRAMING_CHANGE_CAPABLE = 0. Power-on default value = 0.		
	Bits 6:2 = reserved. Read all zeros.		
	Bit 7 = PANEL_SELF_TEST_ENABLE (not supported in PTN3356R1).		
Branch dev	vice specific field	1	I
00500h	BRANCH_IEEE_OUI 7:0	00h	read only
	Branch vendor 24-bit IEEE OUI.		
	NXP OUI = 00		
00501h	BRANCH_IEEE_OUI 15:8	60h	read only
	NXP OUI = 60		
00502h	BRANCH_IEEE_OUI 23:16	37h	read only
	NXP OUI = 37		
00503h	ID string = 3356N2	33h	read only
00504h		33h	read only
00505h		35h	read only
00506h		36h	read only
00507h		4Eh	read only
00508h		32h	read only
00509h	Hardware revision level v1.1	10h	read only
0050Ah	Firmware/software major revision level	01h	read only
0050Bh	Firmware/software minor revision level	02h	read only
0050Ch to 005FFh	RESERVED		read only

[1] Byte fields that are not explicitly listed are by definition reserved ('RES') and their default value is 0h.

ROM-based low-power DP to VGA adapter

7.4 VGA monitor detection

The PTN3356R1 implements a robust scheme for VGA monitor detection. It senses presence or absence of VGA monitor load termination (75 Ω) by pulsing the RGB lines. The load sensing operation is performed periodically to determine the latest VGA connectivity status. If the VGA monitor is disconnected, then the detection logic informs the host platform via IRQ_HPD signal.

7.5 EDID handling

<u>Figure 3</u> shows a DisplayPort-to-analog video converter between the DisplayPort source and a VGA monitor. The PTN3356R1 implements a DP I²C-Over-AUX protocol, providing for DP source access to the monitor's DDC bus. With this, the monitor's EDID data is made available to DP source for access at any time.

It is the responsibility of the source to choose only video modes which are declared in the EDID and to adjust the DisplayPort link capabilities (link rate and lane count) to provide the necessary video bandwidth. The PTN3356R1 does not cache or modify the EDID to match the capabilities of the DisplayPort link data.

If the DisplayPort source drives display modes that are not specified in the EDID mode list, the PTN3356R1 does not detect such conditions, and it depends entirely on the VGA display on what is being displayed.

7.6 Triple 8-bit video DACs and VGA outputs

The triple 8-bit video DACs output a 700 mV (peak-to-peak) analog video output signal into 37.5 Ω load, as is the case of a doubly terminated 75 Ω cable. The DAC is capable of supporting the maximum pixel rate supported by a two-lane DP link (240 MHz).

7.6.1 DAC reference resistor

An external reference resistor must be connected between pin RSET and ground. This resistor sets the reference current which determines the analog output level, and is specified as 1.2 k Ω with a 1 % tolerance. This value allows a 0.7 V (peak-to-peak) output into a 37.5 Ω load (for example, double-terminated 75 Ω coaxial cable).

ROM-based low-power DP to VGA adapter

8. Power-up and reset

PTN3356R1 has built-in power-on reset circuitry which automatically sequences the part through reset and initialization. In addition, there is a dedicated pin (RST_N) to control/effect reset operation externally. This provides flexibility at the platform level for debug or application purpose.

Before link is established, the PTN3356R1 holds VSYNC and HSYNC signals LOW and blanks the RGB signals.

While the PTN3356R1 performs power-on initialization,

- The HPD signal is driven LOW, to indicate to the DisplayPort source that the PTN3356R1 is not ready for AUX channel communication. Once the device is initialized, the HPD level is produced based on CFG1/CFG2 setting
- The RGB outputs are disabled
- The VSYNC and HSYNC outputs are maintained LOW as long as there is no active video streaming from the DisplayPort source.

9. Configurability

The PTN3356R1 delivers flexibility for application usage by providing configurability via two options:

- Configuration pins CFG1, CFG2, CFG5, and TESTMODE
- DP-AUX vendor-specific configuration registers

The pins provide limited application board level configurability, whereas vendor-specific configuration registers deliver ultimate flexibility. The configuration pin changes (static, dynamic) are reflected in the IC behavior.

The configuration pin definitions are as follows:

- CFG1, CFG2 are used as dedicated configuration pins with binary leveled I/O. The use of these configuration pins is defined in <u>Table 7</u>.
- Configuration pin CFG5 selects OSC_IN clock frequency setting. <u>Table 5</u> captures the pin definition.

Table 5.CFG5 pin definition

Configuration input	OSC_IN clock frequency setting
HIGH	24 MHz
LOW	25 MHz
OPEN	27 MHz

The TESTMODE pin is used to indicate selection of JTAG or configuration for CFG1, CFG2 and CFG5. <u>Table 6</u> defines the possible combinations of TESTMODE pin.

Product data sheet

Table 6. TESTMODE pin definition

Pin value	Mode selection
LOW	Configuration pin functionality is selected
OPEN	Configuration pin functionality is selected
HIGH	JTAG functionality is selected.

CFG1, CFG2 can be used in configuration pin mode. PTN3356R1 automatically detects the mode in which these pins are used. If they are used as Configuration pins, <u>Table 7</u> determines the possible and allowed combinations for these pin settings.

Table 7. CFG1/CFG2 pin definitions

Pin value	System behavior
00	Compliant HPD behavior
01	Most interoperable (non-compliant) HPD behavior
10	Most interoperable (non-compliant) HPD behavior
11	(Default) Compliant behavior

10. Application design-in information

With its maximum integration features, the PTN3356R1 has low BOM requirement at the platform application level. Figure 4 illustrates the PTN3356R1 usage in a system application context. On the DP side, it is connected to DP source and the VGA side, it is connected to VGA connector. The PTN3356R1 system application requires the following components additionally: supply decoupling capacitors, DC blocking capacitors, pull-up/down resistors, (optional) inductor for DC-to-DC converter, crystal oscillator. For more details on reference design information, contact NXP team.

NXP Semiconductors

ROM-based low-power DP to VGA adapter T TN3356R1

© NXP Semiconductors N.V. 2016. All rights reserved.

VBUCK_1V5

VDD 3V3

0.1uE

GND

ST_N 5

10

0.1u

2 1

A15_DAC OSC_OUT

CFG2_SDA GS/TCK

12pF

DNL

12pF

DNL

1.2K 1%

VDD_3V3

DDC SCL

PI FILTER DESIGN IS

* 3.3pF

22 Ohm 300m/

3.3pF

<u>٦</u> 2

22 Ohm 300mA

3.3pF 3.3pF

 \Rightarrow

CUSTOMER SPECIFIC

2.2K \sim

2.2K

DDC SDA

36

~~~

VDD\_5V

HSYNC VGA

VSYNC VGA

VDD\_5\

BAT5

RED VG

DDC\_SDA

VSYNC\_VGA

DDC\_SC

VDD\_CONN\_5V

4

-OGND3 GND4

 $\leftrightarrow$ 

RED\_VGA

GRN\_VGA

BLU VGA

aaa-01378

22 Obm 300mA

3.3pF 3.3pF

 $\leftarrow$ 

VGA CONN

Resonator (with built-in capacitors)

27MHz

RED1

RSET

GRN1

BLU1

HSYNC

VSYNC

DDC\_SDA1

VDDE33\_IO

N.

3

+

CFG5\_XTAL CFG5 OPEN: SELECT 27 MHZ XTAL

RED

75 75 75

4

Æ

Application with LDO mode Fig 5.

# NXP Semiconductors

**ROM-based low-power DP to VGA adapter** PTN3356R1

### **10.1 Display resolution**

<u>Table 8</u> lists some example display resolutions and clock rates that PTN3356R1 supports. (Refer to Footnote 1 on page 2.)

| Display | Active vide | Active video |                   | Total frame    |                  | Vertical   | Pixel   | Data | Standard type     |
|---------|-------------|--------------|-------------------|----------------|------------------|------------|---------|------|-------------------|
| type    |             | per<br>pixel | frequency<br>(Hz) | clock<br>(MHz) | rate<br>(Gbit/s) |            |         |      |                   |
| VGA     | 640         | 480          | 800               | 525            | 24               | 59.94      | 25.175  | 0.76 | Industry standard |
| SVGA    | 800         | 600          | 1056              | 628            | 24               | 60.317     | 40.000  | 1.20 | VESA guidelines   |
| XGA     | 1024        | 768          | 1344              | 806            | 24               | 60.004     | 65.000  | 1.95 | VESA guidelines   |
| XGA+    | 1152        | 864          | 1600              | 900            | 24               | 75         | 108.000 | 3.24 | VESA standard     |
| HD      | 1360        | 768          | 1792              | 795            | 24               | 60.015     | 85.500  | 2.56 | VESA standard     |
| HD/WXGA | 1366        | 768          | 1792              | 798            | 24               | 59.79      | 85.501  | 2.57 | VESA standard     |
| HD/WXGA | 1280        | 720          | 1650              | 750            | 24               | 60         | 74.250  | 2.23 | CEA standard      |
| WXGA    | 1280        | 800          | 1680              | 831            | 24               | 59.81      | 83.500  | 2.50 | CVT               |
| WXGA    | 1280        | 800          | 1696              | 838            | 24               | 74.934     | 106.500 | 3.19 | CVT               |
| WXGA    | 1280        | 800          | 1712              | 843            | 24               | 84.88      | 122.500 | 3.68 | CVT               |
| SXGA-   | 1280        | 960          | 1800              | 1000           | 24               | 60         | 108.000 | 3.24 | VESA standard     |
| SXGA    | 1280        | 1024         | 1688              | 1066           | 24               | 60.02      | 108.000 | 3.24 | VESA standard     |
| SXGA    | 1280        | 1024         | 1688              | 1066           | 24               | 75.025     | 135.001 | 4.05 | VESA standard     |
| SXGA    | 1280        | 1024         | 1728              | 1072           | 24               | 85.024     | 157.500 | 4.72 | VESA standard     |
| SXGA+   | 1400        | 1050         | 1864              | 1089           | 24               | 59.978     | 121.749 | 3.65 | CVT               |
| WXGA+   | 1440        | 900          | 1904              | 934            | 24               | 59.887     | 106.499 | 3.19 | CVT               |
| HD+     | 1600        | 900          | 1800              | 1000           | 24               | 60 (RB)    | 108.000 | 3.24 | VESA standard     |
| UXGA    | 1600        | 1200         | 2160              | 1250           | 24               | 60         | 162.000 | 4.86 | VESA standard     |
| UXGA    | 1600        | 1200         | 2160              | 1250           | 24               | 65         | 175.500 | 5.27 | VESA standard     |
| WSXGA+  | 1680        | 1050         | 2240              | 1089           | 24               | 59.954     | 146.249 | 4.39 | CVT               |
| FHD     | 1920        | 1080         | 2200              | 1125           | 24               | 60         | 148.500 | 4.46 | CEA standard      |
| WUXGA   | 1920        | 1200         | 2592              | 1245           | 18               | 59.885     | 193.251 | 4.35 | CVT               |
| WUXGA   | 1920        | 1200         | 2080              | 1235           | 24               | 59.95 (RB) | 154.000 | 4.62 | CVT RB            |
| 2.76M3  | 1920        | 1440         | 2600              | 1500           | 18               | 60         | 234.000 | 5.27 | VESA standard     |
| QWXGA   | 2048        | 1152         | 2250              | 1200           | 24               | 60 (RB)    | 162.000 | 4.86 | CVT RB            |
| QXGA    | 2048        | 1536         | 2128              | 1573           | 24               | 49.95 (RB) | 167.20  | 5.02 | CVT RB            |

 Table 8.
 Display resolution and pixel clock rate<sup>[1]</sup>

[1] Contact NXP team for other monitor timings not listed in this table.

The available bandwidth over a 2-lane HBR DisplayPort v1.2a link limits pixel clock rate support to:

- 240 MHz at 6 bpc
- 180 MHz at 8 bpc

15 of 38

### 10.2 Power supply filter

Sufficient decoupling capacitance to ground should be connected from each  $V_{DD}$  pin directly to ground to filter supply noise.

### **10.3 DAC terminations**

Typically, the VGA RGB outputs are (doubly) terminated. Figure 6 shows an example VGA application. A 75  $\Omega$  termination is used to terminate inside the motherboard, and another 75  $\Omega$  termination is typically used inside the RGB monitor. The load sensing mechanism assumes this double termination. Figure 7 is another example of VGA application with 50  $\Omega$  PCB trace impedance with 150  $\Omega$  terminations.

In general, it is left to the system integrator to decide on their specific implementation.



### Fig 6. PTN3356R1 DAC termination example 1



Product data sheet

PTN3356R1

16 of 38

### **10.4 Timing reference**

PTN3356R1 requires a crystal or ceramic resonator for a stable VGA clock timing reference. Resonators have a higher frequency tolerance than crystals, but have the advantage of integrated capacitors and therefore a small PCB area and potentially lower cost.

| Crystal parameters                   | Specifications           |
|--------------------------------------|--------------------------|
| Frequency                            | 24 MHz, 25 MHz or 27 MHz |
| Operation mode                       | Fundamental              |
| Frequency tolerance                  | ±1 % maximum             |
| Frequency stability over temperature | ±0.4 % maximum           |
| Load capacitance (CL)                | 18 pF                    |
| Shunt capacitance                    | < 2 pF                   |
| Equivalent Series Resistance (ESR)   | < 150 Ω                  |

| Table 9. | Required | crystal s | pecifications | (SMD com | nonents) |
|----------|----------|-----------|---------------|----------|----------|
| Tuble 5. | Required | orystar s | peomodions    |          | ponentaj |

### **11. Limiting values**

### Table 10. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol               | Parameter                       | Conditions        | Min  | Мах                        | Unit |
|----------------------|---------------------------------|-------------------|------|----------------------------|------|
| V <sub>DD(3V3)</sub> | supply voltage (3.3 V)          |                   | -0.3 | +4.6                       | V    |
| VI                   | input voltage                   | 3.3 V CMOS inputs | -0.3 | V <sub>DD(3V3)</sub> + 0.5 | V    |
| T <sub>stg</sub>     | storage temperature             |                   | -65  | +150                       | °C   |
| V <sub>ESD</sub>     | electrostatic discharge voltage | HBM [1]           | -    | 7000                       | V    |
|                      |                                 | CDM [2]           | -    | 1000                       | V    |

 Human Body Model: ANSI/ESDA/JEDEC JDS-001-2012 (Revision of ANSI/ESDA/JEDEC JS-001-2011), ESDA/JEDEC Joint standard for ESD sensitivity testing, Human Body Model - Component level; Electrostatic Discharge Association, Rome, NY, USA; JEDEC Solid State Technology Association, Arlington, VA, USA.

[2] Charged Device Model: JESD22-C101E December 2009 (Revision of JESD22-C101D, October 2008), standard for ESD sensitivity testing, Charged Device Model - Component level; JEDEC Solid State Technology Association, Arlington, VA, USA.

### 12. Recommended operating conditions

### Table 11. Operating conditions

| Symbol                 | Parameter                       | Conditions                                | Min | Тур           | Max | Unit |
|------------------------|---------------------------------|-------------------------------------------|-----|---------------|-----|------|
| V <sub>DD(3V3)</sub>   | supply voltage (3.3 V)          |                                           | 2.8 | 3.3           | 3.6 | V    |
| t <sub>r</sub>         | rise time                       | supply voltage                            | -   | -             | 10  | ms   |
| VI                     | input voltage                   | 3.3 V CMOS inputs                         | 0   | 3.3           | 3.6 | V    |
|                        |                                 | SDA and SCL inputs with respect to ground | 0   | 5             | 5.5 | V    |
| R <sub>ext(RSET)</sub> | external resistance on pin RSET | between RSET (pin 21) and GND             | -   | $1.20\pm1~\%$ | -   | kΩ   |
| T <sub>amb</sub>       | ambient temperature             | commercial grade                          | 0   | -             | 85  | °C   |

### **13. Characteristics**

### 13.1 Current consumption, power dissipation and thermal characteristics

# Table 12. Current consumption, power dissipation and thermal characteristics Over operating free-air temperature range, unless otherwise noted.

| Symbol               | Parameter                                   | Conditions                                                           | Min | Тур | Max | Unit |
|----------------------|---------------------------------------------|----------------------------------------------------------------------|-----|-----|-----|------|
| I <sub>DD</sub>      | supply current                              | normal operation, WUXGA / 193 MHz pixel clock; $V_{DD(3V3)} = 3.3 V$ | -   | 60  | -   | mA   |
|                      |                                             | Low power D3 mode; $V_{DD(3V3)} = 3.3 V$                             | -   | 124 | -   | μΑ   |
| Ρ                    | power dissipation                           | normal operation, WUXGA / 193 MHz pixel clock (reduced blanking)     |     |     |     |      |
|                      |                                             | Buck converter mode;<br>PTN3356R1 being used as per <u>Figure 4</u>  | -   | 200 | -   | mW   |
|                      |                                             | LDO mode;<br>PTN3356R1 being used as per <u>Figure 5</u>             | -   | 405 | -   | mW   |
| R <sub>th(j-a)</sub> | thermal resistance from junction to ambient | in free air for SOT617-3                                             | -   | 45  | -   | K/W  |

### Table 13. Device characteristics

Over operating free-air temperature range, unless otherwise noted.

| Symbol               | Parameter         | Conditions                                                                                                                                                                                                                         | Min | Тур | Max | Unit |
|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| t <sub>startup</sub> | start-up time     | device start-up time from power-on to HPD = HIGH;<br>VGA monitor remains connected at power-on <sup>[1]</sup> ;<br>RST_N = HIGH; supply voltage within operating range to<br>specified operating characteristics                   | -   | -   | 100 | ms   |
| t <sub>w(rst)</sub>  | reset pulse width | device is supplied with valid supply voltage                                                                                                                                                                                       | 10  | -   | -   | μs   |
| t <sub>d(rst)</sub>  | reset delay time  | device reset delay time from RST_N toggling (LOW to<br>HIGH) until HPD goes HIGH;<br>VGA monitor remains connected at power-on <sup>[1]</sup> ;<br>supply voltage within operating range to specified<br>operating characteristics | -   | -   | 100 | ms   |

[1] VGA monitor remains connected at power-on — this condition is applicable only when PTN3356R1 is used in most interoperable (non-compliant) HPD mode (that is, CFG1/CFG2 is '01' or '10').

### 13.2 DisplayPort receiver main link

### Table 14. DisplayPort receiver main link characteristics<sup>[1]</sup>

Over operating free-air temperature range, unless otherwise noted.

| Symbol                       | Parameter                                                | Conditions                                 | Min         | Тур | Max | Unit |
|------------------------------|----------------------------------------------------------|--------------------------------------------|-------------|-----|-----|------|
| UI                           | unit interval                                            | for high bit rate<br>(2.7 Gbit/s per lane) | -           | 370 | -   | ps   |
|                              |                                                          | for low bit rate<br>(1.62 Gbit/s per lane) | -           | 617 | -   | ps   |
| $\Delta f_{DOWN}$ SPREAD     | link clock down spreading                                | 1                                          | 2] 0.0      | -   | 0.5 | %    |
| V <sub>RX_DIFFp-p</sub>      | differential input peak-to-peak                          | at RX package pins                         |             |     |     |      |
|                              | voltage                                                  | for high bit rate                          | 3 120       | -   | -   | mV   |
|                              |                                                          | for reduced bit rate                       | 3] 40       | -   | -   | mV   |
| V <sub>RX_DC_CM</sub>        | RX DC common mode voltage                                | 1                                          | 4] 0        | -   | 2.0 | V    |
| I <sub>RX_SHORT</sub>        | RX short-circuit current limit                           | 1                                          | 5] -        | -   | 50  | mA   |
| C <sub>RX</sub>              | AC coupling capacitor                                    | on DP Main Link and<br>AUX inputs          | 75          | -   | 200 | nF   |
| f <sub>RX_TRACK_BW_HBR</sub> | jitter closed loop tracking bandwidth<br>(High Bit Rate) | ]                                          | <u>)</u> 10 | -   | 20  | MHz  |
| f <sub>RX_TRACK_BW_RBR</sub> | jitter closed loop tracking bandwidth (Reduced Bit Rate) | 1                                          | 5.4         | -   | 20  | MHz  |

[1] <u>Ref. 1</u> supersedes in case of any mismatch of specification items.

[2] Up to 0.5 % down spread is supported. Modulation frequency range of 30 kHz to 33 kHz must be supported.

[3] Informative; refer to Figure 8 for definition of differential voltage.

[4] Common mode voltage is equal to  $V_{bias\_RX}$  voltage.

[5] Total drive current of the input bias circuit when it is shorted to its ground.

[6] The measurements are always taken with PRBS7 test signal. Minimum CDR closed loop tracking bandwidth at the receiver when the input is a PRBS7 pattern.



Product data sheet

### 13.3 DisplayPort receiver AUX CH

### Table 15. DisplayPort receiver AUX CH characteristics<sup>[1]</sup>

Over operating free-air temperature range, unless otherwise noted.

| Symbol                    | Parameter                             | Conditions          |            | Min  | Тур | Max  | Unit |
|---------------------------|---------------------------------------|---------------------|------------|------|-----|------|------|
| UI                        | unit interval                         | AUX                 | [2]        | 0.4  | 0.5 | 0.6  | μs   |
| t <sub>jit(cc)</sub>      | cycle-to-cycle jitter time            | transmitting device | [3]        | -    | -   | 0.04 | UI   |
| V <sub>AUX_DIFFp-p</sub>  |                                       | receiving device    | [4]        | -    | -   | 0.05 | UI   |
| V <sub>AUX_DIFFp-p</sub>  | AUX differential peak-to-peak voltage | transmitting device | [5]        | 0.39 | -   | 1.38 | V    |
|                           |                                       | receiving device    | [5]        | 0.32 | -   | 1.36 | V    |
| R <sub>AUX_TERM(DC)</sub> | AUX CH termination DC resistance      | informative         |            | -    | 100 | -    | Ω    |
| V <sub>AUX_DC_CM</sub>    | AUX DC common-mode voltage            |                     | [6]        | 0    | -   | 2.0  | V    |
| V <sub>AUX_TURN_CM</sub>  | AUX turnaround common-mode voltage    |                     | [7]        | -    | -   | 0.3  | V    |
| I <sub>AUX_SHORT</sub>    | AUX short-circuit current limit       |                     | [8]        | -    | -   | 90   | mA   |
| C <sub>AUX</sub>          | AUX AC coupling capacitor             |                     | <u>[9]</u> | 75   | -   | 200  | nF   |

[1] <u>Ref. 1</u> supersedes in case of any mismatch of specification items.

[2] Results in the bit rate of 1 Mbit/s including the overhead of Manchester II coding.

[3] Maximum allowable UI variation within a single transaction at connector pins of a transmitting device. Equal to 24 ns maximum. The transmitting device is a source device for a request transaction and a sink device for a reply transaction.

[4] Maximum allowable UI variation within a single transaction at connector pins of a receiving device. Equal to 30 ns maximum. The transmitting device is a source device for a request transaction and a sink device for a reply transaction.

 $\label{eq:linear} [5] \quad V_{AUX\_DIFFp-p} = 2 \times |V_{AUX+} - V_{AUX-}|.$ 

[6] Common-mode voltage is equal to  $V_{bias_{TX}}$  (or  $V_{bias_{RX}}$ ) voltage.

[7] Steady-state common-mode voltage shift between transmit and receive modes of operation.

[8] Total drive current of the transmitter when it is shorted to its ground.

[9] The AUX CH AC coupling capacitor placed both on the DisplayPort source and sink devices.

PTN3356R1

21 of 38

### 13.4 HPD characteristics

### Table 16. HPD characteristics<sup>[1]</sup>

Over operating free-air temperature range, unless otherwise noted.

| Symbol           | Parameter                                  | Conditions                                   | Min | Тур | Max | Unit |
|------------------|--------------------------------------------|----------------------------------------------|-----|-----|-----|------|
| Output ch        | aracteristics                              |                                              |     |     |     |      |
| V <sub>OH</sub>  | HIGH-level output voltage                  | I <sub>OH</sub> = 2 mA                       | 2.4 | -   | -   | V    |
| V <sub>OL</sub>  | LOW-level output voltage                   | $I_{OL} = -2 \text{ mA}$                     | -   | -   | 0.4 | V    |
| I <sub>OSH</sub> | HIGH-level short-circuit<br>output current | drive HIGH; cell connected to ground         | -   | -   | 16  | mA   |
| I <sub>OSL</sub> | LOW-level short-circuit<br>output current  | drive LOW; cell connected to $V_{\text{DD}}$ | -   | -   | 15  | mA   |

[1] Ref. 1 supersedes in case of any mismatch of specification items.

### 13.5 DDC/CFG1, CFG2 characteristics

### Table 17. DDC/CFG1, CFG2 characteristics

 $V_{CC} = 4.5 \text{ V}$  to 5.5 V<sup>[1]</sup>. Over operating free-air temperature range, unless otherwise noted.

| Symbol              | Parameter                    | Conditions                                           | Min                     | Тур | Max                                | Unit |
|---------------------|------------------------------|------------------------------------------------------|-------------------------|-----|------------------------------------|------|
| Input cha           | racteristics                 |                                                      | 1                       |     |                                    |      |
| V <sub>IH</sub>     | HIGH-level input voltage     |                                                      | $0.7\times V_{DD(3V3)}$ | -   | 5.5                                | V    |
| V <sub>IL</sub>     | LOW-level input voltage      |                                                      | -0.5                    | -   | +0.3 $\times$ V <sub>DD(3V3)</sub> | V    |
| V <sub>I(hys)</sub> | hysteresis of input voltage  |                                                      | $0.1\times V_{DD(3V3)}$ | -   | -                                  | V    |
| ILI                 | input leakage current        | V <sub>I</sub> = 5 V                                 | -                       | -   | 10                                 | μA   |
| Output ch           | naracteristics               |                                                      |                         |     |                                    |      |
| I <sub>OL</sub>     | LOW-level output current     | $V_{OL} = 0.4 V$                                     | 3.0                     | -   | -                                  | mA   |
| I <sub>O(sc)</sub>  | short-circuit output current | drive LOW;<br>cell connected to V <sub>DD(3V3)</sub> | -                       | -   | 40.0                               | mA   |
| Cio                 | input/output capacitance     | V <sub>I</sub> = 3 V or 0 V                          |                         |     |                                    |      |
|                     |                              | V <sub>DD(3V3)</sub> = 3.3 V                         | -                       | 6   | 7                                  | pF   |
|                     |                              | V <sub>DD(3V3)</sub> = 0 V                           | -                       | 6   | 7                                  | pF   |

[1]  $V_{CC}$  is the pull-up voltage for DDC/CFG1, CFG2.

[2] <u>Table 17</u> applies to CFG1 and CFG2 pins as they operate as I<sup>2</sup>C-bus I/O but only used as CFG pins.

PTN3356R1

22 of 38

### 13.6 DAC

### Table 18.DAC characteristics

Over operating free-air temperature range, unless otherwise noted.

| Symbol                 | Parameter                    | Conditions | Min  | Тур   | Max  | Unit |
|------------------------|------------------------------|------------|------|-------|------|------|
| N <sub>res(DAC)</sub>  | DAC resolution               |            | -    | -     | 8    | bit  |
| f <sub>clk</sub>       | clock frequency              |            | -    | -     | 240  | MHz  |
| $\Delta I_{o(DAC)}$    | DAC output current variation | DAC-to-DAC | -    | -     | 4    | %    |
| INL                    | integral non-linearity       |            | -1   | ±0.25 | +1   | LSB  |
| DNL                    | differential non-linearity   |            | -0.5 | ±0.1  | +0.5 | LSB  |
| V <sub>o(DAC)max</sub> | maximum DAC output voltage   |            | 665  | 700   | 770  | mV   |
| C <sub>o(DAC)</sub>    | DAC output capacitance       |            | -    | 3.5   | -    | pF   |
|                        | DAC noise injection ratio    |            | -1.5 | -     | +1.5 | %    |

### 13.7 HSYNC, VSYNC characteristics

### Table 19. HSYNC and VSYNC characteristics

Over operating free-air temperature range, unless otherwise noted.

| Symbol           | Parameter                               | Conditions                                                                     |            | Min | Тур | Max | Unit |
|------------------|-----------------------------------------|--------------------------------------------------------------------------------|------------|-----|-----|-----|------|
| Output char      | acteristics                             |                                                                                |            |     |     |     | ÷    |
| V <sub>OH</sub>  | HIGH-level output voltage               | $    I_{OH} = 8 \text{ mA}; \\ V_{DD(3V3)} = 3.3 \text{ V} \pm 10 \text{ \%} $ |            | 2.4 | -   | -   | V    |
| V <sub>OL</sub>  | LOW-level output voltage                | $I_{OL} = -8 \text{ mA}$                                                       |            | -   | -   | 0.5 | V    |
| I <sub>OSH</sub> | HIGH-level short-circuit output current | drive HIGH;<br>cell connected to ground                                        | <u>[1]</u> | -   | -   | 100 | mA   |
| I <sub>OSL</sub> | LOW-level short-circuit output current  | drive LOW;<br>cell connected to V <sub>DD</sub>                                | [1]        | -   | -   | 100 | mA   |

[1] The parameter values specified are simulated and absolute values.

### 13.8 Configuration pins CFG3, CFG5, TESTMODE

### Table 20. Configuration pins characteristics

Over operating free-air temperature range, unless otherwise noted.

| Symbol           | Parameter                | Conditions                                   | Min                     | Тур | Max                      | Unit |
|------------------|--------------------------|----------------------------------------------|-------------------------|-----|--------------------------|------|
| Input chara      | cteristics               | <u>.</u>                                     |                         |     |                          |      |
| V <sub>IH</sub>  | HIGH-level input voltage |                                              | $0.7\times V_{DD(3V3)}$ | -   | -                        | V    |
| V <sub>IL</sub>  | LOW-level input voltage  |                                              |                         |     | $0.3 \times V_{DD(3V3)}$ | V    |
| Weak pull-o      | down characteristics     |                                              |                         |     |                          |      |
| I <sub>pd</sub>  | pull-down current        | $V_{I} = V_{DD(3V3)}$                        | 15                      | 30  | 70                       | μΑ   |
| I <sub>pu</sub>  | pull-up current          | V <sub>1</sub> = 0 V                         | 25                      | 55  | 90                       | μΑ   |
| R <sub>ext</sub> | external resistance      | external resistor used on configuration pins | -                       | -   | 10                       | kΩ   |

PTN3356R1 Product data sheet

### 13.9 RST\_N

### Table 21. RST\_N characteristics

Over operating free-air temperature range, unless otherwise noted.

| Symbol                 | Parameter                       | Conditions           | Min                     | Тур | Мах                     | Unit |
|------------------------|---------------------------------|----------------------|-------------------------|-----|-------------------------|------|
| Input cha              | racteristics                    | ·                    |                         |     |                         |      |
| V <sub>IH</sub>        | HIGH-level input voltage        |                      | $0.7\times V_{DD(3V3)}$ | -   | -                       | V    |
| V <sub>IL</sub>        | LOW-level input voltage         |                      | -                       | -   | $0.3\times V_{DD(3V3)}$ | V    |
| I <sub>pu(RST_N)</sub> | pull-up current on<br>pin RST_N | V <sub>1</sub> = 0 V | 25                      | 55  | 90                      | μA   |

PTN3356R1 Product data sheet

### **NXP Semiconductors**

# PTN3356R1

### **ROM-based low-power DP to VGA adapter**

### 14. Package outline



### Fig 9. Package outline SOT617-3 (HVQFN32)

All information provided in this document is subject to legal disclaimers.

### **ROM-based low-power DP to VGA adapter**

### **15. Packing information**

### 15.1 Packing method



### Table 22. Dimensions and quantities

| Reel dimensions<br>d × w (mm) <sup>[1]</sup> |      |   | Outer box dimensions $I \times w \times h$ (mm) |
|----------------------------------------------|------|---|-------------------------------------------------|
| 330 × 12                                     | 6000 | 1 | $341\times 338\times 39$                        |

[1] d = reel diameter; w = tape width.

### **ROM-based low-power DP to VGA adapter**

### **15.2 Product orientation**



### 15.3 Carrier tape dimensions



### Table 23. Carrier tape dimensions

In accordance with IEC 60286-3.

| A <sub>0</sub> (mm) | B <sub>0</sub> (mm) | K <sub>0</sub> (mm) | T (mm)        | P <sub>1</sub> (mm) | W (mm)     |
|---------------------|---------------------|---------------------|---------------|---------------------|------------|
| $5.3\pm0.1$         | $5.3\pm0.1$         | $1.10\pm0.1$        | $0.30\pm0.05$ | 8 ± 0.1             | $12\pm0.3$ |

### **ROM-based low-power DP to VGA adapter**



### 15.4 Reel dimensions

### Table 24. Reel dimensions

In accordance with IEC 60286-3.

|     |      | B [min]<br>(mm) | C [min]<br>(mm) | D [min]<br>(mm) |
|-----|------|-----------------|-----------------|-----------------|
| 330 | 18.4 | 1.5             | 12.8            | 20.2            |

### **ROM-based low-power DP to VGA adapter**

### 15.5 Barcode label



### Table 25.Barcode label dimensions

|          | Reel barcode label<br>I × w (mm) |
|----------|----------------------------------|
| 100 × 75 | 100 × 75                         |

### 16. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365* "Surface mount reflow soldering description".

### 16.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

### 16.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

### 16.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

### 16.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 15</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 26 and 27

### Table 26. SnPb eutectic process (from J-STD-020D)

| Package thickness (mm) | Package reflow temperature (°C | )     |
|------------------------|--------------------------------|-------|
|                        | Volume (mm <sup>3</sup> )      |       |
|                        | < 350                          | ≥ 350 |
| < 2.5                  | 235                            | 220   |
| ≥ 2.5                  | 220                            | 220   |

### Table 27. Lead-free process (from J-STD-020D)

| Package thickness (mm) | Package reflow ter        | nperature (°C) |        |
|------------------------|---------------------------|----------------|--------|
|                        | Volume (mm <sup>3</sup> ) |                |        |
|                        | < 350                     | 350 to 2000    | > 2000 |
| < 1.6                  | 260                       | 260            | 260    |
| 1.6 to 2.5             | 260                       | 250            | 245    |
| > 2.5                  | 250                       | 245            | 245    |

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see <u>Figure 15</u>.

**ROM-based low-power DP to VGA adapter** 



For further information on temperature profiles, refer to Application Note *AN10365 "Surface mount reflow soldering description"*.

Product data sheet

**ROM-based low-power DP to VGA adapter** 

### 17. Soldering: PCB footprints



### Fig 16. PCB footprint for SOT617-3 (HVQFN32); reflow soldering

All information provided in this document is subject to legal disclaimers.

ROM-based low-power DP to VGA adapter

### **18. Abbreviations**

| Table 28.            | Abbre | viations                                  |
|----------------------|-------|-------------------------------------------|
| Acronym              |       | Description                               |
| AUX CH               |       | Auxiliary Channel                         |
| BER                  |       | Bit Error Rate                            |
| bpc                  |       | bits per color                            |
| bpp                  |       | bits per pixel                            |
| BoM                  |       | Bill of Materials                         |
| CDM                  |       | Charged-Device Model                      |
| CEA                  |       | Consumer Electronic Association           |
| CMOS                 |       | Complementary Metal-Oxide Semiconductor   |
| CVT                  |       | Coordinated Video Timings                 |
| CVT RB               |       | CVT Reduced Blanking                      |
| DAC                  |       | Digital-to-Analog Converter               |
| DDC                  |       | Display Data Channel                      |
| DJ                   |       | Deterministic Jitter                      |
| DP                   |       | DisplayPort (VESA)                        |
| DPCD                 |       | DisplayPort Configuration Data            |
| ECC                  |       | Error Correction Code                     |
| EDID                 |       | Extended Display Identification Data      |
| eDP                  |       | embedded DisplayPort                      |
| ESD                  |       | ElectroStatic Discharge                   |
| НВМ                  |       | Human Body Model                          |
| HBR                  |       | High Bit Rate                             |
| HDCP                 |       | High-bandwidth Digital Content Protection |
| HPD                  |       | Hot Plug Detect                           |
| I <sup>2</sup> C-bus |       | Inter-Integrated Circuit bus              |
| IEC                  |       | International Electrotechnical Commission |
| I/O                  |       | Input/Output                              |
| LSB                  |       | Least Significant Bit                     |
| MCCS                 |       | Monitor Control Command Set (VESA)        |
| MSB                  |       | Most Significant Bit                      |
| QXGA                 |       | Quad eXtended Graphics Array              |
| RB                   |       | Reduced Blanking                          |
| RBR                  |       | Reduced Bit Rate                          |
| RGB                  |       | Red/Green/Blue                            |
| ROM                  |       | Read-Only Memory                          |
| SSC                  |       | Spread Spectrum Clocking                  |
| SVGA                 |       | Super Video Graphics Array                |
| SXGA                 |       | Super eXtended Graphics Array             |
| TJ                   |       | Total Jitter                              |
| UI                   |       | Unit Interval                             |

PTN3356R1 Product data sheet

### NXP Semiconductors

# PTN3356R1

### **ROM-based low-power DP to VGA adapter**

| Table 28. Abbre | eviationscontinued                      |
|-----------------|-----------------------------------------|
| Acronym         | Description                             |
| UXGA            | Ultra eXtended Graphics Array           |
| VESA            | Video Electronics Standards Association |
| VGA             | Video Graphics Array                    |
| VSIS            | Video Signal Interface Standard         |
| WUXGA           | Wide Ultra eXtended Graphics Array      |
| XGA             | eXtended Graphics Array                 |

### **19. References**

- [1] VESA DisplayPort Standard Version 1, Revision 2a; March 2012
- [2] Display Data Channel Command Interface Standard Version 1.1; October 29, 2004
- [3] Video Signal Standard (VSIS) Version 1, Rev. 2; December 12, 2002
- [4] IEC 61000-4-2, Electromagnetic compatibility (EMC) Part 4-2: Testing and measurement techniques — ElectroStatic Discharge (ESD) immunity test, edition 2.0, 2008-12

### 20. Revision history

### Table 29.Revision history

| Document ID     | Release date                     | Data sheet status               | Change notice | Supersedes      |
|-----------------|----------------------------------|---------------------------------|---------------|-----------------|
| PTN3356R1 v.2.2 | 20160816                         | Product data sheet              | -             | PTN3356R1 v.2.1 |
| Modifications:  | Removed 5                        | 00 piece MOQ                    | 1             | 1               |
| PTN3356R1 v.2.1 | 20150716                         | Product data sheet              | -             | PTN3356R1 v.2   |
| Modifications:  | Removed "                        | COMPANY CONFIDENTIAL" wate      | rmark         |                 |
| PTN3356R1 v.2   | 20150629                         | Product data sheet              | -             | PTN3356R1 v.1   |
| Modifications:  | Updated Fig.                     | gure 7                          | 1             |                 |
|                 | <ul> <li>Changed data</li> </ul> | ata sheet status to Product     |               |                 |
|                 | ESD HBM of                       | changed to 7 kV                 |               |                 |
|                 | • <u>Table 2</u> : Ad            | ded 500 piece minimum order qua | ntity         |                 |
| PTN3356R1 v.1   | 20140911                         | Objective data sheet            | -             | -               |

### **ROM-based low-power DP to VGA adapter**

### 21. Legal information

### 21.1 Data sheet status

| Document status[1][2]          | Product status <sup>[3]</sup> | Definition                                                                            |
|--------------------------------|-------------------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development                   | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification                 | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production                    | This document contains the product specification.                                     |

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <a href="http://www.nxp.com">http://www.nxp.com</a>.

### 21.2 Definitions

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

### 21.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP Semiconductors N.V. 2016. All rights reserved.

### **ROM-based low-power DP to VGA adapter**

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

**Non-automotive qualified products** — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

### 21.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

### 22. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

**ROM-based low-power DP to VGA adapter** 

### 23. Contents

| 1                                                                                                                                                                                                                                                           | General description 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                                                                                                                                                                                                                                           | Features and benefits 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.1                                                                                                                                                                                                                                                         | VESA-compliant DisplayPort converter 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.2                                                                                                                                                                                                                                                         | VESA-compliant eDP extensions 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.3                                                                                                                                                                                                                                                         | DDC channel output 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.4                                                                                                                                                                                                                                                         | Analog video output 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.5                                                                                                                                                                                                                                                         | General features 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3                                                                                                                                                                                                                                                           | Applications 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4                                                                                                                                                                                                                                                           | Ordering information 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.1                                                                                                                                                                                                                                                         | Ordering options 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5                                                                                                                                                                                                                                                           | Functional diagram 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6                                                                                                                                                                                                                                                           | Pinning information 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6.1                                                                                                                                                                                                                                                         | Pinning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.2                                                                                                                                                                                                                                                         | Pin description 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7                                                                                                                                                                                                                                                           | Functional description 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7.1                                                                                                                                                                                                                                                         | DisplayPort Main Link7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.2                                                                                                                                                                                                                                                         | DisplayPort auxiliary channel (AUX CH) 7                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7.3                                                                                                                                                                                                                                                         | DPCD registers 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.3.1                                                                                                                                                                                                                                                       | PTN3356R1 specific DPCD register settings 8                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.4                                                                                                                                                                                                                                                         | VGA monitor detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7.5                                                                                                                                                                                                                                                         | EDID handling 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.6                                                                                                                                                                                                                                                         | Triple 8-bit video DACs and VGA outputs 10<br>DAC reference resistor                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.6.1                                                                                                                                                                                                                                                       | DAC reference resistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8                                                                                                                                                                                                                                                           | Power-up and reset 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9                                                                                                                                                                                                                                                           | Power-up and reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9<br>10                                                                                                                                                                                                                                                     | Power-up and reset11Configurability11Application design-in information12                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9<br>10<br>10.1                                                                                                                                                                                                                                             | Power-up and reset11Configurability11Application design-in information12Display resolution15                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>9</b><br><b>10</b><br>10.1<br>10.2                                                                                                                                                                                                                       | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>9</b><br><b>10</b><br>10.1<br>10.2<br>10.3                                                                                                                                                                                                               | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16DAC terminations16                                                                                                                                                                                                                                                                                                                                                                   |
| <b>9</b><br><b>10</b><br>10.1<br>10.2<br>10.3<br>10.4                                                                                                                                                                                                       | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16DAC terminations16Timing reference17                                                                                                                                                                                                                                                                                                                                                 |
| <b>9</b><br><b>10</b><br>10.1<br>10.2<br>10.3<br>10.4<br><b>11</b>                                                                                                                                                                                          | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16DAC terminations16Timing reference17Limiting values18                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>9</li> <li>10</li> <li>10.1</li> <li>10.2</li> <li>10.3</li> <li>10.4</li> <li>11</li> <li>12</li> </ul>                                                                                                                                           | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16DAC terminations16Timing reference17Limiting values18Recommended operating conditions18                                                                                                                                                                                                                                                                                              |
| <ul> <li>9</li> <li>10</li> <li>10.1</li> <li>10.2</li> <li>10.3</li> <li>10.4</li> <li>11</li> <li>12</li> <li>13</li> </ul>                                                                                                                               | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16DAC terminations16Timing reference17Limiting values18Recommended operating conditions18Characteristics19                                                                                                                                                                                                                                                                             |
| <ul> <li>9</li> <li>10</li> <li>10.1</li> <li>10.2</li> <li>10.3</li> <li>10.4</li> <li>11</li> <li>12</li> </ul>                                                                                                                                           | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16DAC terminations16Timing reference17Limiting values18Recommended operating conditions18Characteristics19Current consumption, power dissipation and                                                                                                                                                                                                                                   |
| <ul> <li>9</li> <li>10</li> <li>10.1</li> <li>10.2</li> <li>10.3</li> <li>10.4</li> <li>11</li> <li>12</li> <li>13</li> <li>13.1</li> </ul>                                                                                                                 | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16DAC terminations16Timing reference17Limiting values18Recommended operating conditions18Characteristics19Current consumption, power dissipation and<br>thermal characteristics19                                                                                                                                                                                                      |
| <ul> <li>9</li> <li>10</li> <li>10.1</li> <li>10.2</li> <li>10.3</li> <li>10.4</li> <li>11</li> <li>12</li> <li>13</li> <li>13.1</li> <li>13.2</li> </ul>                                                                                                   | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16DAC terminations16Timing reference17Limiting values18Recommended operating conditions18Characteristics19Current consumption, power dissipation and<br>thermal characteristics19DisplayPort receiver main link20                                                                                                                                                                      |
| <ul> <li>9</li> <li>10</li> <li>10.1</li> <li>10.2</li> <li>10.3</li> <li>10.4</li> <li>11</li> <li>12</li> <li>13</li> <li>13.1</li> <li>13.2</li> <li>13.3</li> </ul>                                                                                     | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16DAC terminations16Timing reference17Limiting values18Recommended operating conditions18Characteristics19Current consumption, power dissipation and<br>thermal characteristics19DisplayPort receiver main link20DisplayPort receiver AUX CH21                                                                                                                                         |
| <ul> <li>9</li> <li>10</li> <li>10.1</li> <li>10.2</li> <li>10.3</li> <li>10.4</li> <li>11</li> <li>12</li> <li>13</li> <li>13.1</li> <li>13.2</li> <li>13.3</li> <li>13.4</li> </ul>                                                                       | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16DAC terminations16Timing reference17Limiting values18Recommended operating conditions19Current consumption, power dissipation and<br>thermal characteristics19DisplayPort receiver main link20DisplayPort receiver AUX CH21HPD characteristics22                                                                                                                                     |
| <ul> <li>9</li> <li>10</li> <li>10.1</li> <li>10.2</li> <li>10.3</li> <li>10.4</li> <li>11</li> <li>12</li> <li>13</li> <li>13.1</li> <li>13.2</li> <li>13.3</li> <li>13.4</li> <li>13.5</li> </ul>                                                         | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16DAC terminations16Timing reference17Limiting values18Recommended operating conditions18Characteristics19Current consumption, power dissipation and<br>thermal characteristics19DisplayPort receiver main link20DisplayPort receiver AUX CH21HPD characteristics22DDC/CFG1, CFG2 characteristics22                                                                                    |
| <ul> <li>9</li> <li>10</li> <li>10.1</li> <li>10.2</li> <li>10.3</li> <li>10.4</li> <li>11</li> <li>12</li> <li>13</li> <li>13.1</li> <li>13.2</li> <li>13.3</li> <li>13.4</li> <li>13.5</li> <li>13.6</li> </ul>                                           | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16DAC terminations16Timing reference17Limiting values18Recommended operating conditions18Characteristics19Current consumption, power dissipation and<br>thermal characteristics19DisplayPort receiver main link20DisplayPort receiver AUX CH21HPD characteristics22DDC/CFG1, CFG2 characteristics22DAC23                                                                               |
| <ul> <li>9</li> <li>10</li> <li>10.1</li> <li>10.2</li> <li>10.3</li> <li>10.4</li> <li>11</li> <li>12</li> <li>13</li> <li>13.1</li> <li>13.2</li> <li>13.3</li> <li>13.4</li> <li>13.5</li> </ul>                                                         | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16DAC terminations16Timing reference17Limiting values18Recommended operating conditions18Characteristics19Current consumption, power dissipation and<br>thermal characteristics19DisplayPort receiver main link20DisplayPort receiver AUX CH21HPD characteristics22DDC/CFG1, CFG2 characteristics22DAC23HSYNC, VSYNC characteristics23                                                 |
| <ul> <li>9</li> <li>10</li> <li>10.1</li> <li>10.2</li> <li>10.3</li> <li>10.4</li> <li>11</li> <li>12</li> <li>13</li> <li>13.1</li> <li>13.2</li> <li>13.3</li> <li>13.4</li> <li>13.5</li> <li>13.6</li> <li>13.7</li> </ul>                             | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16DAC terminations16Timing reference17Limiting values18Recommended operating conditions18Characteristics19Current consumption, power dissipation and<br>thermal characteristics19DisplayPort receiver main link20DisplayPort receiver AUX CH21HPD characteristics22DDC/CFG1, CFG2 characteristics23HSYNC, VSYNC characteristics23Configuration pins CFG3, CFG5, TESTMODE 23            |
| <ul> <li>9</li> <li>10</li> <li>10.1</li> <li>10.2</li> <li>10.3</li> <li>10.4</li> <li>11</li> <li>12</li> <li>13</li> <li>13.1</li> <li>13.2</li> <li>13.3</li> <li>13.4</li> <li>13.5</li> <li>13.6</li> <li>13.7</li> <li>13.8</li> </ul>               | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16DAC terminations16Timing reference17Limiting values18Recommended operating conditions18Characteristics19Current consumption, power dissipation and<br>thermal characteristics19DisplayPort receiver main link20DisplayPort receiver AUX CH21HPD characteristics22DDC/CFG1, CFG2 characteristics22DAC23HSYNC, VSYNC characteristics23Configuration pins CFG3, CFG5, TESTMODE 23       |
| <ul> <li>9</li> <li>10</li> <li>10.1</li> <li>10.2</li> <li>10.3</li> <li>10.4</li> <li>11</li> <li>12</li> <li>13</li> <li>13.1</li> <li>13.2</li> <li>13.3</li> <li>13.4</li> <li>13.5</li> <li>13.6</li> <li>13.7</li> <li>13.8</li> <li>13.9</li> </ul> | Power-up and reset11Configurability11Application design-in information12Display resolution15Power supply filter16DAC terminations16Timing reference17Limiting values18Recommended operating conditions18Characteristics19Current consumption, power dissipation and<br>thermal characteristics19DisplayPort receiver main link20DisplayPort receiver AUX CH21HPD characteristics22DDC/CFG1, CFG2 characteristics22DAC23HSYNC, VSYNC characteristics23Configuration pins CFG3, CFG5, TESTMODE23RST_N24 |

| 15.1 | Packing method            | 26 |
|------|---------------------------|----|
| 15.2 | Product orientation       | 27 |
| 15.3 | Carrier tape dimensions   | 27 |
| 15.4 | Reel dimensions           | 28 |
| 15.5 | Barcode label             | 29 |
| 16   | Soldering of SMD packages | 30 |
| 16.1 | Introduction to soldering | 30 |
| 16.2 | Wave and reflow soldering | 30 |
| 16.3 | Wave soldering            | 30 |
| 16.4 | Reflow soldering          | 31 |
| 17   | Soldering: PCB footprints | 33 |
| 18   | Abbreviations             | 34 |
| 19   | References                | 35 |
| 20   | Revision history          | 35 |
| 21   | Legal information         | 36 |
| 21.1 | Data sheet status         | 36 |
| 21.2 | Definitions               | 36 |
| 21.3 | Disclaimers               | 36 |
| 21.4 | Trademarks                | 37 |
| 22   | Contact information       | 37 |
| 23   | Contents                  | 38 |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2016.

### All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 16 August 2016 Document identifier: PTN3356R1



### ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.



Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

### www.lifeelectronics.ru