

1.5Gbps Link Replicator for Fibre Channel, Gigabit Ethernet, HDTV and SATA

General Description

The SY897132L is a Link Replicator which provides both serial loop replication as well as serial loopback control functions. It is high performance and works up to 1.5Gbps on 3.3V power supplies. The SY897132L is ideal for Fibre Channel, Gigabit Ethernet, HDTV and SATA applications. Other applications include internal/external connection routing in Host Bus Adaptors as well as hot-pluggable links between switch cards.

The IN input is sent to both OUT0 and OUT1, which are enabled when OE0 and OE1 are HIGH and disabled when they are LOW. When the outputs are disabled, both differential outputs go HIGH and the buffers are turned off to save power.

MUX0 controls whether IN or IN1 is sent to OUT0. Similarly, MUX1 controls whether IN or IN0 is sent to OUT1. MUX selects whether IN0 or IN1 is sent to OUT.

The SY897132L operates on $3.3V \pm 5\%$ power supplies and is guaranteed over the full industrial temperature range (-40°C to +85°C). The SY897132L is part of Micrel's high-speed, Precision Edge[®] product line.

Datasheets and support documentation can be found on Micrel's web site at: <u>www.micrel.com</u>.

Precision Edge®

Features

- Serial loop replication
- No external components required
- T11 Fibre Channel compliant at 1.0625Gbps
- IEEE802.3z Gigabit Ethernet compliant at 1.25Gbps
- SMPTE-292M compliant at 1.485Gbps
- Operates with 3.3V ±5%
- Industrial temperature range: -40°C to +85°C
- Available in 28-pin TSSOP package

Applications

- Link Replicator for: Fibre Channel, Gigabit Ethernet, HDTV and SATA
- For line cards to provide redundant, hot-swappable links to redundant switch fabric cards
- For host bus adapter boards for routing between internal and external connectors

Functional Block Diagram

Precision Edge is a registered trademark of Micrel, Inc.

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking
SY897132LKG	K-28	Industrial	7132L with Pb-Free bar-line indicator
SY897132LKGTR ⁽²⁾	K-28	Industrial	7132L with Pb-Free bar-line indicator
SY897132LKY	K-28	Industrial	7132L with Pb-Free bar-line indicator
SY897132LKYTR ⁽²⁾	K-28	Industrial	7132L with Pb-Free bar-line indicator

Notes:

1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC Electricals only.

2. Tape and Reel.

Pin Configuration

28-Pin TSSOP (K-28)

Pin Number	Pin Name	Pin Function	
5, 6	IN, /IN	Differential Input Pairs: The inputs are internally biased to 1.2V.	
24, 23	IN0, /IN0		
18, 17	IN1, /IN1		
11,12	OUT, /OUT	LVPECL Differential Output Pairs.	
28,27	OUT0, /OUT0		
21,20	OUT1, /OUT1		
2	OE0	Output Enable (TTL Inputs): OEx pins enable OUTx pins when HIGH. When OEx is	
8	OE1	LOW, OUTx are powered down and both OUT and /OUT go HIGH.	
3	MUX	Source Select for OUT (TTL Input): Selects either IN0 (LOW) or IN1 (HIGH); defaults HIGH when left open.	
16	MUX0	Source Select for OUT0 (TTL Input): Selects either IN (LOW) or IN1 (HIGH); defaults HIGH when left open.	
15	MUX1	Source Select for OUT1 (TTL Input): Selects either IN (HIGH) or IN0 (LOW); defaults HIGH when left open.	
9	VCC	Positive Power Supply: Bypass with $0.1\mu F/0.01\mu F$ low ESR capacitors as close to the V _{CC} pin as possible. Supplies input and core circuitry.	
10, 13	VCCP	Positive Output Power Supply: Bypass with 0.1µF//0.01µF low ESR capacitors as	
1, 26	VCCP0	close to the VCCPx pins as possible. Supplies the respective output buffers.	
19, 22	VCCP1		
4, 7, 14, 25	GND, Exposed pad	Ground: Exposed pad must be connected to a ground plane that is the same potential as the ground pins.	

Pin Description

Input/Output Truth Table

MUX Se	etting	OUT & /OUT	OUT0 & /OUT0	OUT1 & /OUT1
Low		IN0 & /IN0	-	-
MUX	High	IN1 & /IN1	-	-
MUXO	Low	-	IN & /IN	-
MUX0	High	-	IN1 & /IN1	-
MUX1	Low	-	-	IN0 & /IN0
NIUXT	High	-	-	IN & /IN

Absolute Maximum Ratings⁽¹⁾

Supply Voltage (V _{CC})	0.5V to +4.0V
Input Voltage (VINPECL)	-0.5V to V _{CC} + 0.5V
Input Voltage (VINTTL)	-0.5V to V _{CC} + 0.5V
LVPECL Output Current (IOUT)	
Lead Temperature (soldering, 20sec.	.)260°C
Maximum Case Temperature	–55°C to +125°C
Storage Temperature (T _s)	–65°C to +150°C

Operating Ratings⁽²⁾

Supply Voltage (V _{CC})	3.135V to 3.465V
Ambient Temperature (T _A)	40°C to +85°C
Package Thermal Resistance ⁽³⁾	
TSSOP	
Still-air (θ_{JA})	76°C/W
Junction-to-Case $(\theta_{JC})^{(4)}$	⁾ 25°C/W

DC Electrical Characteristics⁽⁵⁾

 V_{CC} = 3.135V to 3.465V; T_A = -40°C to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CC}	Power Supply Voltage Range		3.135	3.3	3.465	V
I _{CC}	Power Supply Current	Max. V _{CC}		105	125	mA
VIH	Input HIGH Voltage	INx, /INx	1.2		Vcc	V
V _{IL}	Input LOW Voltage	INx, /INx	0		V _{IH} -0.1	V
V _{IN}	Input Voltage Swing	INx, /INx, see Figure 2a	0.15		1.3	V
V_{DIFF_IN}	Differential Input Voltage Swing (IN - /IN)	AC-coupled, Internally Biased to 1.2V	0.3		2.6	V
PD	Power Dissipation	Outputs Open, Max V _{CC}			450	mW

LVPECL Outputs DC Electrical Characteristics⁽⁵⁾

 V_{CC} = 3.135V to 3.465V; T_A = -40°C to +85°C, R_L = 50 Ω to V_{cc} -2.0V unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OH}	Output HIGH Voltage			V _{CC} -1V		V
V _{OL}	Output LOW Voltage			V _{CC} -1.8V		V
V _{DIFF_OUT_50}	Differential Output Voltage Swing		1000		2200	mV
VDIFF_OUT_75	Differential Output Voltage Swing	$R_L = 75\Omega$ to V_{cc} -2.0V	1200		2200	mV

LVTTL/CMOS DC Electrical Characteristics⁽⁵⁾

 V_{CC} = 3.135V to 3.465V; T_A = -40°C to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{IH}	Input HIGH Voltage		2.0		V _{CC} +0.5	V
VIL	Input LOW Voltage		0		0.8	V
I _{IH}	Input HIGH Current				100	μA
IIL	Input LOW Current		-100			μA

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

- 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB. ψ_{JB} and θ_{JA} values are determined for a four-layer board in still-air number, unless otherwise stated. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

4. JEDEC standard multilayer board -2S2P (2 signal, 2 power)

5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC Electrical Characteristics

1/ - 2.125//to 2.465//T	- 10°C to +95°C unloss otherwise stated
$v_{\rm CC} = 3.135 v \ 10 \ 3.405 v, 1_{\rm A}$	= -40° C to $+85^{\circ}$ C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{MAX}	Maximum Frequency	NRZ Data	1.5			Gbps
t _{PD}	Propagation Delay	Figure 1a		0.4	4	ns
t _{Jitter}	Deterministic Jitter	Note 8			40	ps _{pp}
t _R , t _F	Output Rise/Fall Times (20% to 80%)	At full output swing.		140	175	ps
	Duty Cycle		47		53	%
T _{ENABLE}	Output Enable Time (OE LOW to HIGH)	See Figure 1b		8	20	ns
T _{DISABLE}	Output Disable Time (OE HIGH to LOW)	See Figure 1b		3	10	ns

Notes:

6. Output-to-Output skew is the difference in time between both outputs, receiving data from the same input, for the same temperature, voltage and transition.

7. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and no skew at the edges at the respective inputs.

8. Deterministic jitter is measured at 1.5Gbps with both K28.5 and 2²³–1 PRBS pattern.

Detailed Description

Input Functionality

The inputs are typically AC-coupled and are terminated internally to 1.2V. SY897132L can accept AC-coupled and DC-coupled LVPECL, CML.

Outputs Termination

The SY897132L are capable of driving differential transmission lines with either 50Ω or 75Ω impedance. The outputs are designed to operate with or without external termination resistors. However, differential transmission lines should be terminated at the destination to avoid reflections and noise. See Figure 3 for more details.

OEx Output Enable

The Output Enable (OEx) pins on the SY897132L provide an option to turn on/off OUT0 and/or OUT1. If OEx is LOW, the entire output buffer is turned off and both differential outputs float HIGH. This would reduce overall I_{CC} by approximately 26mA for each disabled output pair.

Power Supply Bypass

The SY897132L uses separate 3.3V power supplies for its core circuitry and output buffers. By separating the power supplies, SY897132L minimizes the impact of noise coupled onto the power supply by the various switching outputs. Placing a 0.1μ F bypass capacitor on the VCC pins will provide additional noise isolation.

Timing Diagrams

Figure 1a. Propagation Delay

Figure 1b. Output Enable/Disable Timing (Measured at 50%)

Typical Characteristics

 V_{CC} = 3.3V, V_{IN_DIFF} = 1000mV, T_A = 25°C, unless otherwise stated.

Single-Ended and Differential Swings

Figure 2a. Single-Ended Swing

Figure 2b. Differential Swing

Input Interface Applications

Figure 3. SY897132L Typical Application Interface Diagram

Related Product and Support Documents

Part Number	Function	Datasheet Link
HBW Solutions	New Products and Termination Application Notes	http://www.micrel.com/page.do?page=/product- info/as/HBWsolutions.shtml

Package Information

28-Pin TSSOP (K-28)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2009 Micrel, Incorporated.

ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www.lifeelectronics.ru