

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

FAN1100_F085 Ignition Gate Driver IC

Features

- Signal Line Input Buffer
- Input spike filter
- Operation from Ignition or Battery line
- Ground shift tolerance +/- 1.5 V
- Programmable maximum dwell time
- Programmable Input Pull down current
- Control IGBT current limiting through Vsense pin
- Soft Shutdown following Max Dwell Time out

Applications

The FAN1100_F085 is an advanced Ignition IGBT control IC available in a SO8 package or die sales. This full featured Smart Ignition IGBT Driver is particularly advantageous in "switch on coil" applications where size and system performance of the ignition driver are important.

Description

The FAN1100_F085 is designed to directly drive an ignition IGBT and control the current and spark event of the coil. The coil current is controlled via the input pin. When the input is driven high, the output of the FAN1100_F085 is enabled to turn on the IGBT and start charging the coil. The FAN1100_F085 will sink a current (IIN) into the input pin based on programmed current on the RA line.

An input spike filter suppresses input signals of less then 13 µsec in duration. A Max Dwell timer is included in the FAN1100_F085 which will turn off the IGBT if the input stays active for longer than the programmed time. This time interval can be modified through an external capacitor on the CSSD pin. When the Max Dwell timer is exceeded, the FAN1100_F085 will enter a Soft-Shut-Down mode (SSD) slowly dropping the collector current by lowering the gate drive to the IGBT thereby discharging the coil such as to inhibit a spark event. Once the soft shutdown operation has started, any transitions on the input signal are ignored until after completion of the soft shutdown function. The FAN1100_F085 will also limit the collector current of the IGBT to Ic(lim) during charging. This again is done through the sense resistor in the emitter leg of the Ignition IGBT developing a signal input to the Vsense pin of the FAN1100_F085.

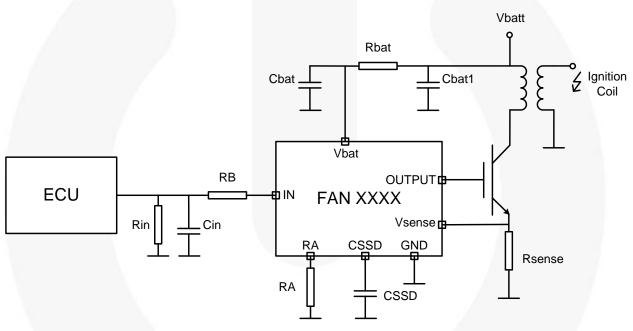
Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FAN1100_F085	-40C to 150C	8-SOIC	Tape & Reel

Recommended External Components

Table 1. Rec	e 1. Recommended External Components				
Component	Description	Vendor	Parameter		
R _{BAT}	Limits transient currents during load dump		R		
C _{BAT!}	Battery or Ignition voltage filtering		С		
Сват	Battery noise transients		С		

. . _ . .


Noise immunity

Sense the collector current

Typical Application

 C_{IN}

 $\mathsf{R}_{\mathsf{SENSE}}$

Figure 1. **Typical Application**

FAN1100_ F085 - Ignition Gate Driver IC

Тур.

200

to 300 0.47

10

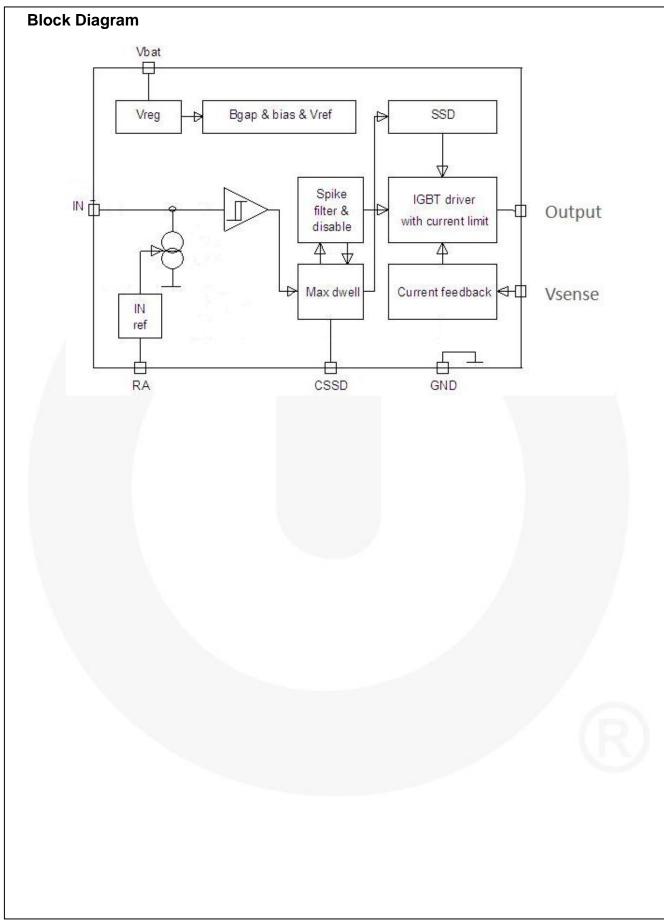
10

20

С

R

Unit


Ω

μF

nF

nF

 $\mathsf{m}\Omega$

Package Outline

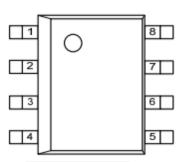


Figure 2. Pin Assignment (Top View)

Pin Descriptions

Name	Туре	Description
Pin1	GND	Ground Reference of the Control IC
Pin2	Input	Signal input
Pin3	NC	
Pin4	CSSD	Maximum dwell time and Soft-Shut-Down current output (to external capacitor)
Pin5	RA	Input reference current output (to external resistor)
Pin6	Output	Gate Drive to the IGBT
Pin7	Vsense	Sense Input used for Ilim function
Pin 8	Vbat	Supply voltage

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{bat}	Voltage at V _{bat} pin (excl. EMC transients)	-0.3	28	V
V _{IN}	Voltage at Input pin with external Rin	- 2	16	V
V _{RA} , V _{CSSD}	Voltage at RA & C _{SSD} and Output pins	- 0.3	5	V
V _{OUTPUT}	Voltage at Gate Output	-0.3	6.5	V
Vsense	Voltage on Vsense pin	0	400	mV
T _J , T _{STG}	Operating and Storage Temperature Range	-40	150	°C
P _{max}	Maximum power dissipation (continuous) at $T_c = 25 \text{ °C}$		0.625	W
$R_{\Theta JA}$	Thermal Resistance junction-case (typical)		200	°C /W
V _{ESD} (pin to pin)	Electrostatic Discharge Voltage (Human Body Model) according to MIL STD 883D, method 3015.7 and EOS/ESD Assn. standard S5.1 - 1993		2	kV

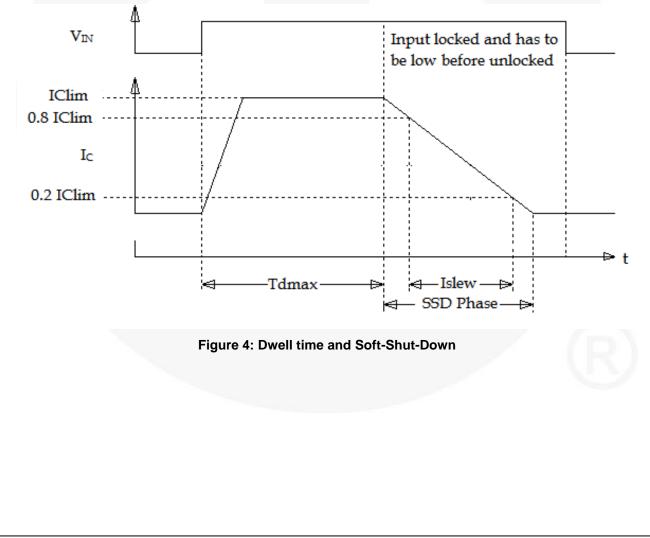
Recommended Operating Conditions (Reference load characteristics)

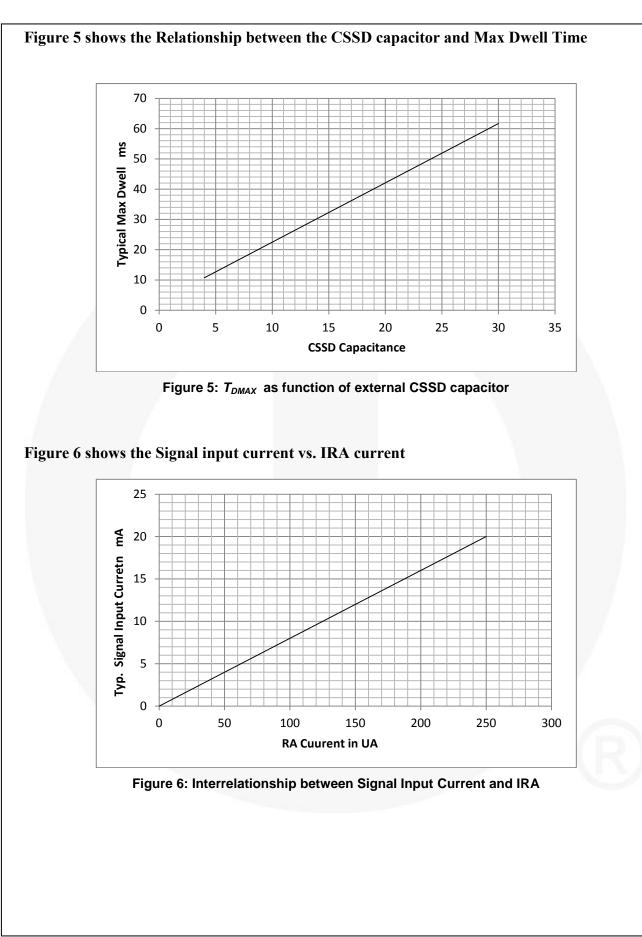
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

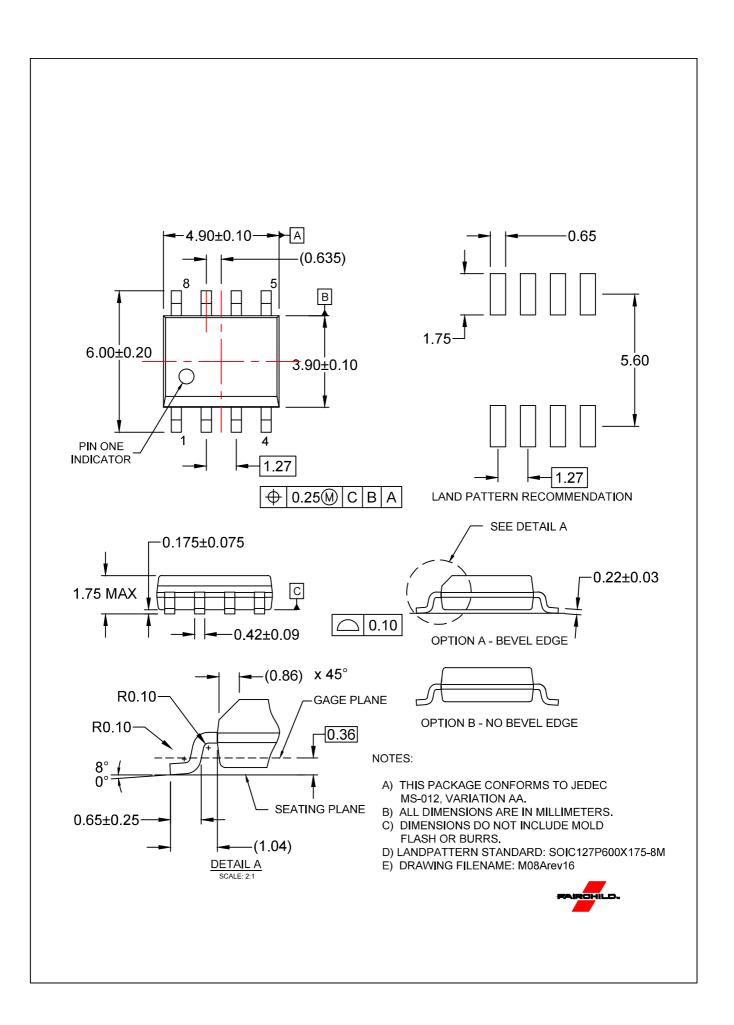
Symbol	Characteristic	Min.	Тур.	Max.	Units
Ictyp	Collector (Coil) Operating Current		12		Α
Lp	Coil Primary Inductance		1.5		mH
Rp	Coil Primary Resistance (25 °C)		0.4	1	Ω
Rload	Load Resistance (for delay time measurements)		2		Ω

Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Power Supply	Conditions Vbat = 6 to 2	28 V; TJ= -40 °C to 150 °C	(unless o	therwise s	pecified)	
Vbat1	Operating voltage	Coil switching function	4		28	V
Vbat2	Operating voltage	All functions	6		28	V
Ibat	Supply current	TJ=150 °C, Vbat = 28 V, RA open, Input = 5 V			5	mA
Vclamp	Vbattery clamp	lbatt = 10 mA	35		50	V
Sense Pin Co	onditions Vbat = 6 to 28 \	/; TJ= -40 °C to 150 °C (ur	nless othe	rwise spec	cified)	
Vlimit	Sense Voltage at current limit	TJ = -40 °C to 150 °C (Vbat>8V)	185		215	mV
Vlimit	Sense Voltage at current limit	TJ = -40 °C to 150 °C (6V <vbat<8v)< td=""><td>170</td><td></td><td></td><td>mV</td></vbat<8v)<>	170			mV
Tspike	Input spike filter	Delay on rising and falling edge of Input		13		μs
TD1	Turn on delay time	(Time from Input =4.0 V to Vout=4.0 V)		15		μs
TD2	Turn off delay time	(Time from Input=0.5 V to Vc-gnd=1.0 V)		15		μs
Input Control	Conditions Vbat = 6 to 28	3 V; TJ= -40 °C to + 150 °C	(unless o	otherwise	specified)	
VINL	Input low voltage		1.2		1.7	V
VINH	Input high voltage		1.5		2	V
VINHys	Input voltage hysteresis		0.25		0.6	V
IIN	Input current (see fig 6)		0.5		15	mA
Gate Output V	oltage Max Vbat = 6 to 28	V; TJ= -40 °C to 150 °C (L	inless oth	erwise spe	cified)	
Vgmax	Vgate max	16KΩ pulldown resistor	4.5	5.25	6	V
Vglow	Vgate low	(0mA <igate<0.4ma @<br="">T=25 °C)</igate<0.4ma>	0.0		0.2	V
Diagnostic Fui	nctions and Protection Vb	at = 6 to 28 V ; TJ= -40 °C	to 150 °C	(unless ot	herwise spe	ecified)
RA	Resistor for input reference current		5.2		200	kΩ
CSSDMIN	Minimum dwell time capacitor		2.3			nF
TDMAX	Maximum dwell time	(CSSD=20 nF)	30		60	ms
ISLEW	Soft-Shut-Down slew rate	(Ic: 80-20%IClim)	0.7	1.5	2.5	A/ms
ICSSD1	CSSD Pin current for TDMAX		0.8	1.25	1.5	μA


Typical Performance Characteristics


Input and spike filter


When the input signal voltage reaches VINH, the IGBT will be switched on charging the coil. When the input voltage goes below VINL, the coil current through the IGBT will be turned off. If the FAN1100_F085 is in SSD mode, the input signal control is disabled. After an SSD sequence input control will be re-enabled after the input has reached a valid low. Positive and negative spikes of less than Tspike duration at the input line will be filtered out and will not turn on/off the IGBT.

Maximum dwell time and soft-shutdown (SSD)

When the IGBT is turned on, a delay timer, dependent on the value of the external CSSD capacitor (see Fig. 5), is started. If a valid falling edge has not been received after the time TDMAX, the IGBT will be turned off slowly as shown in Fig. 4. The coil current will not exceed a slew rate of typical 1.5A/ms. (Based on ISL9V3040 Ignition IGBT). If a valid falling edge is received after the time TDMAX, the edge will be ignored and the soft shutdown will be completed. The IGBT cannot be subsequently turned on until a valid rising edge is detected. If the CSSD capacitor has a value of < 2.2nF or the CSSD pin is shorted to ground, the maximum dwell time and SSD functions will be disabled.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FAN1100_F085

ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www.lifeelectronics.ru