

PFE1500-12-054 Series

AC-DC Power Supply

The PFE1500-12-054 is a series of 1500 Watt AC to DC power-factor-corrected (PFC) power supplies that convert standard AC or HVDC power into a main output of 12 VDC for powering intermediate bus architectures (IBA) in high performance and reliability servers, routers, and network switches.

The PFE1500-12-054 series meet international safety standards and displays the CE-Mark for the European Low Voltage Directive (LVD).

Key Features & Benefits

- High Efficiency, typ. 94% efficiency at half load
- Universal input voltage range: 90-264 VAC
- High voltage DC input: 180-350 VDC (Option for 400 VDC)
- AC input with power factor correction
- Always-On 16.5 W programmable standby output (3.3/5 V)
- Hot-plug capable
- Parallel operation with active digital current sharing
- Digital controls for improved performance
- High density design: 35 W/in³
- Small form factor: 54.5(W) x 40.0(H) x 321.5(L) in mm
- I2C communication interface for control, programming and monitoring with PMBus™ protocol and PSMI Protocol
- Over temperature, output over voltage and overcurrent protection
- 256 Bytes of EEPROM for user information
- 2 Status LEDs: OK and FAIL with fault signaling

Applications

- High Performance Servers
- Routers
- Switches

1. ORDERING INFORMATION

PFE	1500		12		054	X	X
Product Family	Power Level	Dash	V1 Output	Dash	Width	Airflow	Input ³
PFE Front-Ends	1500 W		12 V		54 mm	N: Normal ¹ R: Reverse ²	A: C14 Socket AC: C16 Socket AH: HVDC Socket

- "N" Normal Airflow from Output connector to Input AC socket Ordering PN: PFE1500-12-054NA for C14 AC input connector, input range is 180 VDC ~ 350 VDC and 90 VAC ~ 264 VAC Ordering PN: PFE1500-12-054NAC for C16 AC input connector, input range is 180 VDC ~ 350 VDC and 90 VAC ~ 264 VAC Ordering PN: PFE1500-12-054NAH for both AC and HVDC (RF-203-D-1.0) input connector, input range is 180 VDC ~ 400 VDC and 90 VAC ~ 264 VAC
- 2 "R" Reverse Airflow from Input AC socket to Output connector Ordering PN: PFE1500-12-054RA for C14 AC input connector, input range is 180 VDC ~ 350 VDC and 90 VAC ~ 264 VAC Ordering PN: PFE1500-12-054RAC for C16 AC input connector, input range is 180 VDC ~ 350 VDC and 90 VAC ~ 264 VAC Ordering PN: PFE1500-12-054RAH for both AC and HVDC (RF-203-D-1.0) input connector, input range is 180 VDC ~ 400 VDC and 90 VAC ~ 264 VAC
- For difference of the AC socket and mechanical outline refer to section 13.

2. OVERVIEW

The PFE1500-12-054 Series AC/DC power supply is combination of analog and DSP control, highly efficient front-end power supply. It incorporates resonance-soft-switching technology and interleaved power trains to reduce component stresses, providing increased system reliability and very high efficiency. With a wide input operational voltage range and minimal derating of output power with input voltage and temperature, the PFE1500-12-054 maximizes power availability in demanding server, network, and other high availability applications. The supply is fan cooled and ideally suited for integration with a matching airflow paths. The PFC stage is an analogue solution; MCU is used to communicate with DSP chip on secondary side. The DC/DC stage uses soft switching resonant techniques in conjunction with synchronous rectification. An active OR-ing device on the output ensures no reverse load current and renders the supply ideally suited for operation in redundant power systems. The always-on standby output, with selectable voltage level (3.3/5 V), provides power to external power distribution and management controllers. It is protected with an active OR-ing device for maximum reliability. Status information is provided with front-panel LEDs. In addition, the power supply can be controlled and the fan speed set via the I2C bus. The I2C bus allows full monitoring of the supply, including input and output voltage, current, power, and inside temperatures. The fan speed is adjusted automatically depending on the actual power demand and supply temperature and can be overridden through the I2C bus.

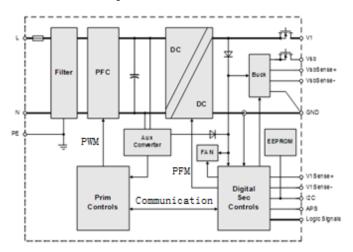


Figure 1. PFE1500-12-054Block Diagram

3. ABSOLUTE MAXIMUM RATINGS

Stresses in excess of the absolute maximum ratings may cause performance degradation, adversely affect long-term reliability, and cause permanent damage to the supply.

PARAME	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
Vi maxc	Maximum Input	Continuous			264	VAC

4. INPUT SPECIFICATIONS

General Condition: $T_A = 0...45$ °C unless otherwise specified.

PARAN	METER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
Vinom	Nominal Input Voltage		100		240	VAC
VInom	Nominal input voltage		200		350 ¹	VDC
V_i	Input Voltage Ranges	Normal operating ($V_{i min}$ to $V_{i max}$)	90		264	VAC
			180		350	VDC
V _{i red}	Derating Input Voltage Range	See Figure 7A and Figure 7B	90		180	VAC
I _{i max}	Max Input Current				15	A_{rms}
I_{ip}	Inrush Current Limitation	$V_{i min}$ to $V_{i max}$, $T_{NTC} = 25^{\circ}C$ (Figure 5)			40	A_p
Fi	Input Frequency		47	50/60	64	Hz
PF	Power Factor	<i>Vi nom</i> , 50Hz, > 0.3 <i>It nom</i>	0.96			W/VA
V _{i on}	Turn-on Input Voltage ²	Ramping up	80	84	89	VAC
V i on	Vi on Turri-ori input Voltage	папрінд цр	169	174	180	VDC
V_{ioff}	Turn-off Input Voltage	Ramping down	75	80	85	VAC
V i off	rum-on input voitage	namping down	166	171	176	VDC
		$V_{1 \text{ nom}}$, $0.1 \cdot I_{2 \text{ nom}}$, $V_{2 \text{ nom}}$, $V_{A} = 25 ^{\circ}\text{C}$		90		
	Efficiency without Fan at AC	$V_{1 \text{ nom}}$, $0.2 \cdot I_{2 \text{ nom}}$, $V_{2 \text{ nom}}$, $V_{3 \text{ nom}}$, $V_{4 \text{ nom}}$		92		
	input	$V_{1 \text{ nom}}$, $0.5 \cdot I_{2 \text{ nom}}$, $V_{2 \text{ nom}}$, $V_{A} = 25 ^{\circ}\text{C}$		94		
n		$V_{1 \text{ nom}}$, $I_{2 \text{ nom}}$, $V_{2 \text{ nom}}$, $T_{A} = 25^{\circ}C$		92		%
η		$V_{\text{nom=336VDC}}$, $0.1 \cdot k_{\text{nom}}$, $V_{\text{x nom}}$, $T_{\text{A}} = 25 ^{\circ}\text{C}$		89		70
	Efficiency without Fan at DC	$V_{\text{nom=336VDC}}$, 0.2· k_{nom} , $V_{\text{x nom}}$, $T_{\text{A}} = 25^{\circ}\text{C}$		92		
	input	$V_{\text{nom=336VDC}}$, 0.5· $I_{\text{x nom}}$, $V_{\text{x nom}}$, $T_{\text{A}} = 25^{\circ}\text{C}$		93.5		
		$V_{i \text{ nom=336VDC}}$, $I_{x \text{ nom}}$, $V_{x \text{ nom}}$, $T_{A} = 25^{\circ}C$		92		
T _{hold}	Hold-up Time	After last AC zero point to $V_1 \ge 10.8V$, V_{SB} within regulation, $V_1 = 230VAC$, $P_{x nom}$	10			ms

Asia-Pacific +86 755 298 85888 **Europe, Middle East** +353 61 225 977

For PFE1500-12-054NAH and PFE1500-12-054RAH, Normal DC operation input range is 200 VDC to 380 VDC and Input range is 180 VDC to 400 VDC; input AC range is 90 VAC ~ 264 VAC.
The Front-End is provided with a minimum hysteresis of 3 V during turn-on and turn-off within the ranges.

4.1 INPUT FUSE

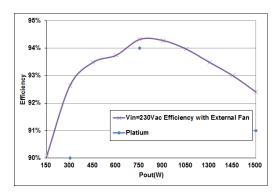
Quick-acting 16 A input fuse (5 x 20 mm) in series the L line inside the power supply protect against severe defects. The fuses are not accessible from the outside and are therefore not serviceable parts.

4.2 INRUSH CURRENT

The AC-DC power supply exhibits an X-capacitance of only $3.2~\mu\text{F}$, resulting in a low and short peak current, when the supply is connected to the mains. The internal bulk capacitor will be charged through an NTC which will limit the inrush current.

NOTE: Do not repeat plug-in / out operations within a short time, or else the internal in-rush current limiting device (NTC) may not sufficiently cool down and excessive inrush current or component failure(s) may result.

4.3 INPUT UNDER-VOLTAGE


If the sinusoidal input voltage stays below the input under voltage lockout threshold Vi on, the supply will be inhibited. Once the input voltage returns within the normal operating range, the supply will return to normal operation again.

4.4 POWER FACTOR CORRECTION

Power factor correction (PFC) is achieved by controlling the input current waveform synchronously with the input voltage. An analog controller is implemented giving outstanding PFC results over a wide input voltage and load ranges. The input current will follow the shape of the input voltage.

4.5 EFFICIENCY

High efficiency (see Figure 2) is achieved by using state-of-the-art silicon power devices in conjunction with soft-transition topologies minimizing switching losses and a full digital control scheme. Synchronous rectifiers on the output reduce the losses in the high current output path. The speed of the fan is digitally controlled to keep all components at an optimal operating temperature regardless of the ambient temperature and load conditions.

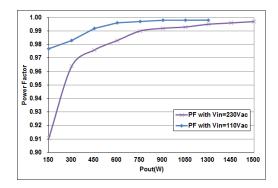


Figure 2. Efficiency vs. Load current (ratio metric loading)

Figure 3. Power factor vs. Load current

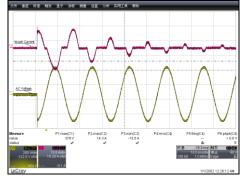


Figure 4. Inrush current, V_{in} = 264 VAC, 90°, CH1: V_{in} (200V/div), CH2: I_{in} (10A/div)

5. OUTPUT SPECIFICATIONS

General Condition: Ta = 0... 45°C unless otherwise specified.

PARAME	TER	DESCRIPTION / CONDITION		MIN	NOM	MAX	UNIT
Main Outp	out V ₁						
V _{1 nom}	Nominal Output Voltage				12.0		VDC
V _{1 set}	Output Setpoint Accuracy	$0.5 \cdot I_{1 \text{ nom}}, T_{amb} = 25 \text{ °C}$		-0.5		+0.5	% V _{1 nom}
dV _{1 tot}	Total Regulation	V_{imin} to V_{imax} , 0 to 100% I_{inom} , T_{am}	in to $T_{a \max}$	-2		+2	% V _{1 nom}
P _{1 nom}	Nominal Output Power	264 VAC > V_{in} ≥ 180 VAC, V_{1} = 12 \displaysty 400 VDC > V_{in} ≥ 180 VDC, V_{1} = 12 \displaysty			1500		W
	Refer to Figure 7 for derating curve	180 VAC > V _{in} ≥ 90 VAC, V ₁ = 12 V	'DC		1000		W
I _{1 nom}	Nominal Output Current	264 VAC > $V_{\text{in}} \ge 180$ VAC, $V_{\text{1}} = 12$ \ 400 VDC > $V_{\text{in}} \ge 180$ VDC, $V_{\text{1}} = 12$ \			125		ADC
	Refer to Figure 7 for derating curve	180 VAC > V _{in} ≥ 90 VAC, V ₁ = 12 V			83.4		ADC
V1 pp	Output Ripple Voltage	V _{1 nom} , I _{1 nom} , 20 MHz BW (See Sec	etion 5.1)			150	mVpp
dV1 Load	Load Regulation	$V_i = V_{i \text{ nom}}, 0 - 100 \% h_{i \text{ nom}}$			80		mV
dV _{1 Line}	Line Regulation	$V_i = V_i _{min} V_i _{max}$			40		mV
dlshare	Current Sharing	Deviation from h_{tot} / N, h_{t} > 10%		-3		+3	Α
dV _{dyn}	Dynamic Load Regulation	$\Delta h = 50\% h_{\text{nom}}, h = 5 100\% h_{\text{r}}$ $dh/dt = 1A/\mu s$	nom,	-0.6		0.6	V
Trec	Recovery Time	$\Delta h = 50\% h_{\text{nom}}, h = 5 \dots 100\% h_{\text{r}}$ $dh/dt = 1A/\mu s$, recovery within 1%	. ,			1	ms
tac v1	Start-up Time from AC					2	sec
t _{V1 rise}	Rise Time	V ₁ = 1090% V _{1 nom}		0.5		10	ms
CLoad	Capacitive Loading	<i>T</i> _a = 25°C				30000	μF
Standby C	Output V _{SB}						
V _{SB nom}	Nominal Output Voltage		VSB_SEL = 1		3.3		VDC
V _{SB set}	Output Setpoint	$0.5 \cdot I_{SB \text{ nom}}, T_{amb} = 25^{\circ}C$	VSB_SEL = 0		5.0		VDC
V SB SET	Accuracy		VSB_SEL = 0 / 1	-0.5		+0.5	% V _{1nom}
dV _{SB tot}	Total Regulation	V_{imin} to V_{imax} , 0 to 100% I_{SBnom} , T_a	_{min} to $\mathcal{T}_{a max}$	-1		+1	% V _{SBnom}
P _{SB nom}	Nominal Output Power	$V_{SB} = 3.3 \text{ VDC}$,			16.5		W
, SE HOII	Homma Garpar Fower	$V_{SB} = 5.0 \text{ VDC},$			16.5		••
I _{SB nom}	Nominal Output Current	$V_{SB} = 3.3 \text{ VDC},$			5		ADC
ios nom		$V_{SB} = 5.0 \text{ VDC},$			3.3		
V _{SB pp}	Output Ripple Voltage	V _{SB nom} , J _{SB nom} , 20 MHz BW (See S	section 5.1)			100	mVpp
dV _{SB}	Droop	0 - 100 % / _{SB nom}	VSB_SEL = 1		67		mV
		V0D 051 4	VSB_SEL = 0	5.05	44	0	
I _{SB max}	Current Limitation	VSB_SEL = 1,		5.25		6	ADC
dl	Dynamia Local Description	VSB_SEL = 0,		3.45		4.3	0/ 1/
dVs _{Bdyn} ⊤	Dynamic Load Regulation	$\Delta k_{\rm B} = 50\% k_{\rm B nom}, k_{\rm B} = 5 \dots 100\%$ $d k_{\rm B} = 5 \dots 100\%$		-3		3	% V _{SBnom}
Trec	Recovery Time					250 2	μS
t _{AC VSB}	Start-up Time from AC Rise Time	V _{SB} = 90% V _{SB nom} V _{SB} = 1090% V _{SB nom}		0.5		30	sec
tvsB rise	Capacitive Loading	$V_{SB} = 1090\%$ $V_{SB nom}$ $T_{amb} = 25^{\circ}C$		0.0		10000	ms μF
C_{Load}	Capacitive Loading	/amb - 23 O				10000	μг

5.1 OUTPUT VOLTAGE RIPPLE

Internal capacitance at the 12 V output (behind the OR-ing circuitry) is minimized to prevent disturbances during hot plug. In order to provide low output ripple voltage in the application, external capacitors should be added close to the power supply output.

The setup of Figure 6 has been used to evaluate suitable capacitor types. The capacitor combinations of Table 1 and Table 2 should be used to reduce the output ripple voltage. The ripple voltage is measured with 20 MHz BWL, close to the external capacitors.

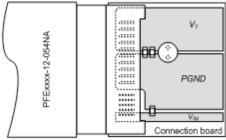


Figure 5. Output ripple test setup

NOTE: Care must be taken when using ceramic capacitors with a total capacitance of 1 μ F to 50 μ F on output V1, due to their high quality factor the output ripple voltage may be increased in certain frequency ranges due to resonance effects.

EXTERNAL CAPACITOR V1	DV1MAX	UNIT
Standard test condition: 1 Pc 10 µF / 63 V Electrolytic Capacitor 1 pc 0.1 uF / 100 V ceramic capacitor	150	mVpp
1Pcs 1000µF/16V/Low ESR Aluminum/ø10x20	120	mVpp
2Pcs 47μF/16V/X5R/1210	100	mVpp
2Pcs 47μF/16V/X5R/1210 plus 1Pcs 1000μF Low ESR AlCap	90	mVpp

EXTERNAL CAPACITOR VSB	DV1MAX	UNIT
Standard test condition: 1 Pc 10 µF / 63 V Electrolytic Capacitor 1 pc 0.1 uF / 100 V ceramic capacitor	100	mVpp
Add 1Pcs 10μF/16 V/X5R/1206	50	mVpp
Add 2Pcs 10µF/1V/X5R/1206	40	mVpp

Table 1. Suitable capacitors for V₁

Table 2. Suitable capacitors for V_{SB}

The output ripple voltage on V_{SB} is influenced by the main output V_1 . Evaluating V_{SB} output ripple must be done when maximum load is applied to V_1 .

6. PROTECTION SPECIFICATIONS

PARAME	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
F	Input Fuse (L)	Not user accessible, quick-acting (F)		16		Α
$V_{1 \text{ OV}}$	OV Threshold V_1		13.3		14.5	VDC
t _{OV V1}	OV Latch Off Time V ₁				1	ms
V SB OV	OV Threshold VSB		110		120	% V _{SB}
tov vsb	OV Latch Off Time V _{SB}				1	ms
√₁ lim	Over Current Limitation V_1	$V_1 > 180 \text{ VAC}, T_a < 45^{\circ}\text{C}$ $V_2 > 90 \text{ VAC}, T_a < 45^{\circ}\text{C}$	128 93		140 110	Α
√n sc	Max Short Circuit Current V ₁	V₁ < 3V			200	Α
t _{V1 SC}	Short Circuit Regulation Time	$\ensuremath{\textit{V}}_1 < 3$ V, time until $\ensuremath{\textit{I}}_{\ensuremath{\textit{V}}_1}$ is limited to $< \ensuremath{\textit{I}}_{\ensuremath{\textit{V}}_1 \text{sc}}$			2	ms
\mathcal{T}_{SD}	Over Temperature On Heat Sinks	Automatic shut-down		115	120	°C

6.1 OVERVOLTAGE PROTECTION

The PFE front-ends provide a fixed threshold overvoltage (OV) protection implemented with a HW comparator. Once an OV condition has been triggered, the supply will shut down and latch the fault condition. The latch can be unlocked by disconnecting the supply from the AC mains or by toggling the PSON_L input.

6.2 VSB UNDERVOLTAGE DETECTION

Both main and standby outputs are monitored. LED and PWOK_H pin signal if the output voltage exceeds $\pm 5\%$ of its nominal voltage. Output undervoltage protection is provided on the standby output only. When V_{SB} falls below 75% of its nominal voltage, the main output V_1 is inhibited.

6.3 CURRENT LIMITATION

6.3.1 MAIN OUTPUT

When main output runs in current limitation mode its output will turn OFF below 2V but will retry to recover every 1s interval. If current limitation mode is still present after the unit retry, output will continuously perform this routine until current is below the current limitation point. The supply will go through soft start every time it retry from current limitation mode.

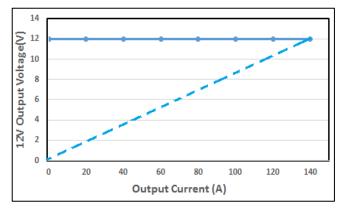


Figure 6. Current Limitation on V_1 ($V_i = 230VAC$)

The main output current limitation will decrease if the ambient (inlet) temperature increases beyond 45° C or if the AC input voltage below 180VAC (see Figure 7A and Figure 7B for power supply applied in Canada and United States of American and other district respectively). Note that the actual over current protection on V_1 will begin at a current level approximately 5 A higher, see Figure 8. (See also Chapter 9 Temperature and Fan Control for additional information.)

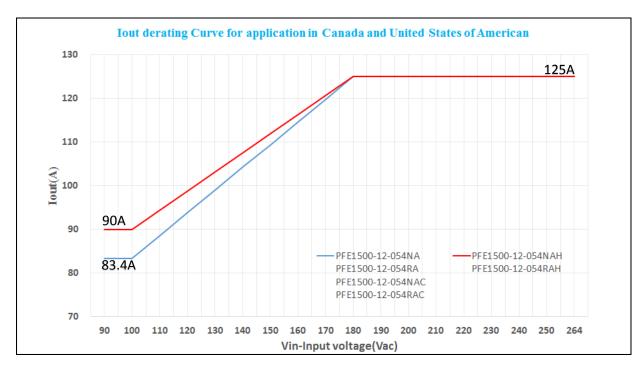


Figure 7A. lout Derating Curve for application in Canada and United States of America at 45C ambient

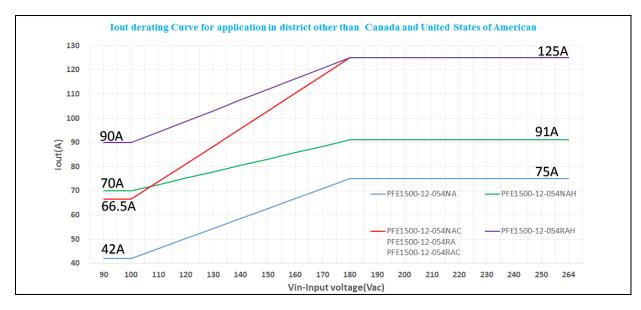


Figure 7B. lout Derating Curve for application in district other than Canada and United States of America at 45C ambient

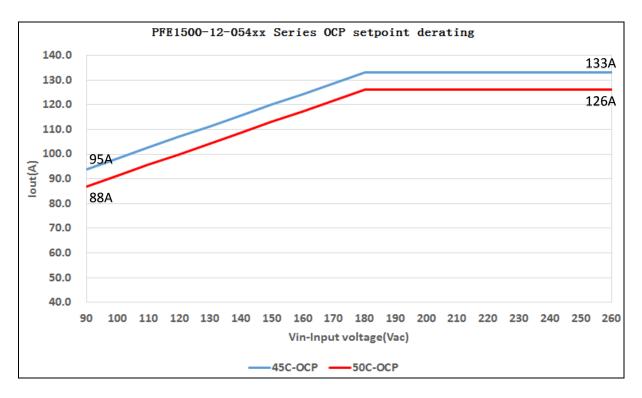


Figure 8. OCP Derating Curve with Vinac and Ambient Temperature for both PFE1500-12-054Series

6.3.2 STANDBY OUTPUT

The standby output exhibits a substantially rectangular output characteristic down to 0V (no hiccup mode / latch off). If it runs in current limitation and its output voltage drops below the UV threshold, then the main output will be inhibited (standby remains on). The current limitation of the standby output is independent of the AC input voltage.

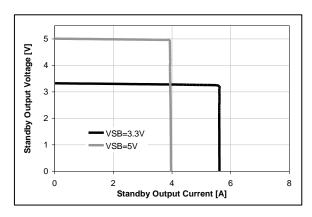


Figure 9. Current Limitation on V_{SB}

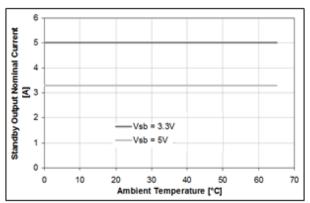


Figure 10. Temperature Derating on VSB

7. MONITORING

PARAMETER	DESCRIPTION / CONDITION		MIN NOM	MAX	UNIT
$V_{i mon}$	Input RMS Voltage	$V_{i \min} \leq V_{i} \leq V_{i \max}$	-2.5	+2.5	%
/ _{i mon}	Input RMS Current	$I_1 > 2 A_{rms}$	-5	+5	%
$P_{i mon}$	True Input Power	$I_1 > 2 A_{rms}$	-5	+5	%
V₁ mon	V ₁ Voltage		-2	+2	%
A mon	V ₁ Current	I1 > 25 A	-2	+2	%
71 mon		I1 ≤ 25 A	-0.5	+0.5	Α
Po nom	Total Output Power	Po > 120 W	-5	+5	%
Fo nom		Po ≤ 120 W	-6	+6	W
V _{SB mon}	Standby Voltage		-0.1	+0.1	V
/ _{SB mon}	Standby Current	/ _{SB} ≤ / _{SB nom}	-0.5	+0.5	Α

8. SIGNAL & CONTROL SPECIFICATIONS

8.1 ELECTRICAL CHARACTERISTICS

PARAMETER	DESCRIPTION / CONDITION		MIN	NOM	MAX	UNIT
PSKILL_H / PSOI	N_L / VSB_SEL / HOTSTANDBYEN_H Inpu	ts				
V _{IL}	Input Low Level Voltage		-0.2		8.0	V
Ин	Input High Level Voltage		2.4		3.5	V
/ L, H	Maximum Input Sink or Source Current		0		1	mA
RpuPSKILL_H	Internal Pull Up Resistor on PSKILL_H			100		kΩ
RpuPSON_L	Internal Pull Up Resistor on PSON_L			10		kΩ
RpuVSB_SEL	Internal Pull Up Resistor on VSB_SEL			10		kΩ
RpuHOTSTANDBYEN_H	Internal Pull Up Resistor on HOTSTANDE	YEN_H		10		kΩ
R _{LOW}	Resistance Pin to SGND for Low Level		0		1	kΩ
R _{HIGH}	Resistance Pin to SGND for High Level		50			kΩ
PWOK_H Output						
V _{OL}	Output Low Level Voltage	I₅ink < 4 mA	0		0.4	V
V он	Output High Level Voltage	/ _{source} < 0.5 mA	2.6		3.5	V
$R_{ m puPWOK_H}$	Internal Pull Up Resistor on PWOK_H			1		kΩ
ACOK_H Output						
Vo∟	Output Low Level Voltage	I₅ink < 2 mA	0		0.4	٧
И он	Output High Level Voltage	$I_{\text{source}} < 50 \ \mu\text{A}$	2.6		3.5	V
R _{puACOK_H}	Internal Pull Up Resistor on ACOK_H			10		kΩ
SMB_ALERT_L O	utput					
<i>V</i> _{ext}	Maximum External Pull Up Voltage				12	V
V ol	Output Low Level Voltage	/source < 4 mA	0		0.4	V
Юн	Maximum High Level Leakage Current				10	μΑ
RpuSMB_ALERT_L	Internal Pull Up Resistor on SMB_ALERT_L			None		kΩ

8.2 INTERFACING WITH SIGNALS

All signal pins have protection diodes implemented to protect internal circuits. When the power supply is not powered, the protection devices start clamping at signal pin voltages exceeding ±0.5 V. Therefore all input signals should be driven only by an open collector/drain to prevent back feeding inputs when the power supply is switched off. If interconnecting of signal pins of several power supplies is required, then this should be done by decoupling with small signal schottky diodes as shown in examples in (Figure 11) except for SMB_ALERT_L, ISHARE and I²C pins. SMB_ALERT_L pins can be interconnected without decoupling diodes, since these pins have no internal pull up resistor and use a 15 V zener diode as protection device against positive voltage on pins. ISHARE pins must be interconnected without any additional components. This in-/output is disconnected from internal circuits when the power supply is switched off.

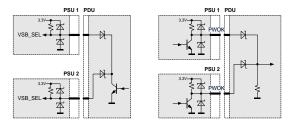


Figure 11. Interconnection of Signal Pins

8.3 FRONT LEDS

There will be 2 separate LED indicators, one green and one amber to indicate the power supply status. There will be a (slow) blinking green POWER LED (OK) to indicate that AC is applied to the PSU and the Standby Voltage is available. This same LED shall go steady to indicate that all the Power Outputs are available. This same LED or separate one will blink (slow) or be solid ON amber to indicate that the power supply has failed or reached a warning status and therefore a replacement of the unit is/maybe necessary. The LED are visible on the power supply's exterior face. The LED location meets ESD Requirements.

POWER SUPPLY CONDITION	GREEN (OK) LED STATUS	AMBER (FAIL) LED STATUS
No AC power to all power supplies	OFF	OFF
Power Supply Failure (includes over voltage, over current, over temperature and fan failure)	OFF	ON
Power Supply Warning events where the power supply continues to operate (high temperature, high power and slow fan)	OFF	Blinking
AC Present/ 12VSB on (PSU OFF)	Blinking	OFF
Power Supply ON and OK	ON	OFF

Table 3. LED Status

8.4 PRESENT_L

This signaling pin is recessed within the connector and will contact only once all other connector contacts are closed. This active-low pin is used to indicate to a power distribution unit controller that a supply is plugged in. The maximum current on PRESENT_L pin should not exceed 10 mA.

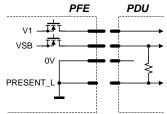


Figure 12. PRESENT_L signal pin

Asia-Pacific +86 755 298 85888 **Europe, Middle East** +353 61 225 977

8.5 PSKILL_H INPUT

The PSKILL_H input is active-high and is located on a recessed pin on the connector and is used to disconnect the main output as soon as the power supply is being plugged out. This pin should be connected to SGND in the power distribution unit. The standby output will remain on regardless of the PSKILL_H input state.

8.6 AC TURN-ON / DROP-OUTS / ACOK H

The power supply will automatically turn-on when connected to the AC line under the condition that the PSON_L signal is pulled low and the AC line is within range. The ACOK_H signal is active-high. The timing diagram is shown in Figure 13 and referenced in Table 4.

OPERATIN	G CONDITION	MIN	MAX	UNIT
<i>t</i> AC VSB	AC Line to 90% V/SB		2	sec
t _{AC V1}	AC Line to 90% V ₁		2	sec
t _{ACOK_H on1}	ACOK_H signal on delay (start-up)		2000	ms
tACOK_H on2	ACOK_H signal on delay (dips)		100	ms
tACOK_H off	ACOK_H signal off delay		5	ms
t√SB V1 del	V _{SB} to V₁ delay	10	500	ms
t√1 holdup	Effective V_1 holdup time	10		ms
t/SB holdup	Effective V _{SB} holdup time	20		ms
t _{ACOK_H V1}	ACOK_H to V₁ holdup	7		ms
t _{ACOK_H VSB}	ACOK_H to V _{SB} holdup	15		ms
t∕ _{1 off}	Minimum V_1 off time	1	2	sec
t/SB off	Minimum V _{SB} off time	1	2	sec

Remark³: AC short dips means below 10ms; AC long dips means 10 ms to 100 ms

Table 4. AC Turn-on / Dip Timing

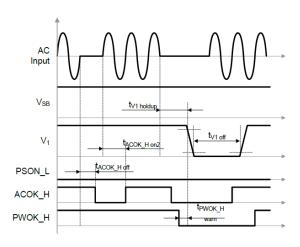


Figure 14. AC short dips

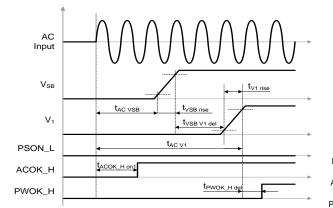


Figure 13. AC turn-on timing

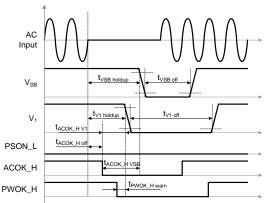


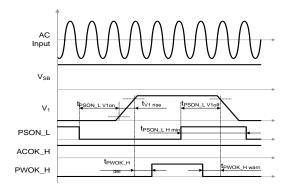
Figure 15. AC long dips

8.7 PSON_L INPUT

The PSON_L is an internally pulled-up (3.3 V) input signal to enable/disable the main output V1 of the front-end. This active-low pin is also used to clear any latched fault condition. The timing diagram is given in Figure 27 and the parameters in Table 5.

OPERATING C	ONDITION	MIN	MAX	UNIT
tPSON_L V1on	PSON_L to 1/1 delay (on)	2	20	ms
tPSON_L V1off	PSON_L to 1/1 delay (off)	2	20	ms
tPSON_L H min	PSON_L minimum High time	10		ms

Table 5. PSON_L timing


8.8 PWOK H SIGNAL

The PWOK_H is an open drain output with an internal pull-up to 3.3 V indicating whether both V_{SB} and V_1 outputs are within regulation. This pin is active-low. The timing diagram is shown in Figure 16 and referenced in the Table 6.

tpwok_H del

OPERATING CONDITION

PSKILL_H

PSON_L, OT, Fan Failure 0.5 2.5 ms ACOK_H (time change with loading 100 ms condition) tpwok Hwam UV and OV on VSB 1 30 ms OC on V1 (Software trigger) -11 0 ms OC on V1 (Hardware trigger) O -1 ms OV on V1 -3 0 ms

PWOK_H to V₁ delay (off) caused by:

PWOK_H to V₁ delay (on)

* A positive value means a warning time, a negative value a delay (after fact).

Figure 16. PSON_L and PWOK_H turn-on/off timing

Table 6. PWOK_H timing

MIN

0

MAX UNIT

ms

500

1

8.9 CURRENT SHARE

The PFE front-ends have an active current share scheme implemented for V_1 . All the ISHARE current share pins need to be interconnected in order to activate the sharing function. If a supply has an internal fault or is not turned on, it will disconnect its ISHARE pin from the share bus. This will prevent dragging the output down (or up) in such cases.

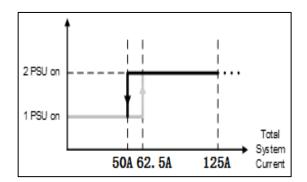
The current share function uses a digital bi-directional data exchange on a recessive bus configuration to transmit and receive current share information. The controller implements a Master/Slave current share function. The power supply providing the largest current among the group is automatically the Master. The other supplies will operate as Slaves and increase their output current to a value close to the Master by slightly increasing their output voltage. The voltage increase is limited to +250 mV.

The standby output uses a passive current share method (droop output voltage characteristic).

8.10 SENSE INPUTS

Both main and standby outputs have sense lines implemented to compensate for voltage drop on load wires. The maximum allowed voltage drop is 200 mV on the positive rail and 100 mV on the PGND rail.

With open sense inputs the main output voltage will rise by 270 mV and the standby output by 50 mV. Therefore if not used, these inputs should be connected to the power output and PGND close to the power supply connector. The sense inputs are protected against short circuit. In this case the power supply will shut down.


8.11 HOT-STANDBY OPERATION

The hot-standby operation is an operating mode allowing to further increase efficiency at light load conditions in a redundant power supply system. Under specific conditions one of the power supplies is allowed to disable its DC/DC stage. This will save the power losses associated with this power supply and at the same time the other power supply will operate in a load range having a better efficiency. In order to enable the hot standby operation, the HOTSTANDBYEN_H and the ISHARE pins need to be interconnected. A power supply will only be allowed to enter the hot-standby mode, when the HOTSTANDBYEN_H pin is high, the load current is low (see *Figure 17*) and the supply was allowed to enter the hot-standby mode by the system controller via the appropriate I²C command (by default disabled). The system controller needs to ensure that only one of the power supplies is allowed to enter the hot-standby mode.

If a power supply is in a fault condition, it will pull low its active-high HOTSTANDBYEN_H pin which indicates to the other power supply that it is not allowed to enter the hot-standby mode or that it needs to return to normal operation should it already have been in the hot-standby mode.

NOTE: The system controller needs to ensure that only one of the power supplies is allowed to enter the hot-standby model.

Figure 18 shows the achievable power loss savings when using the hot-standby mode operation. A total power loss reduction of 5W is achievable.

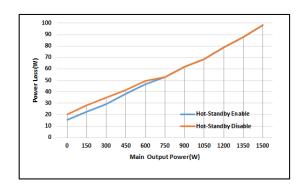


Figure 17. Hot-standby enable/disable current thresholds

Figure 18. PSU power losses with/without hot-standby mode

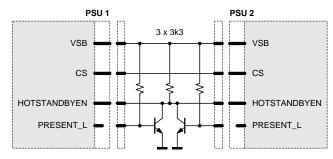


Figure 19. Recommended hot-standby configuration

In order to prevent voltage dips when the active power supply is unplugged while the other is in hot-standby mode, it is strongly recommended to add the external circuit as shown in Figure 19. If the PRESENT_L pin status needs also to be read by the system controller, it is recommended to exchange the bipolar transistors with small signal MOS transistors or with digital transistors.

8.12 I²C / SMBUS COMMUNICATION

The interface driver in the PFE supply is referenced to the V1 Return. The PFE supply is a communication Slave device only; it never initiates messages on the I2C/SMBus by itself. The communication bus voltage and timing is defined in Table 7 further characterized through:

- There are no internal pull-up resistors
- The SDA/SCL IOs are 3.3/5 V tolerant
- Full SMBus clock speed of 100 kbps
- Clock stretching limited to 1 ms
- SCL low time-out of >25 ms with recovery within 10 ms
- Recognizes any time Start/Stop bus conditions

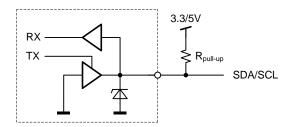


Figure 20. Physical layer of communication interface

The SMB_ALERT_L signal indicates that the power supply is experiencing a problem that the system agent should investigate. This is a logical OR of the Shutdown and Warning events. The power supply responds to a read command on the general SMB_ALERT_L call address 25(0x19) by sending its status register.

Communication to the DSP or the EEPROM will be possible as long as the input AC voltage is provided. If no AC is present, communication to the unit is possible as long as it is connected to a life V1 output (provided e.g. by the redundant unit). If only VSB is provided, communication is not possible.

V_{lL} Input low voltage-0.51.0 V_{lH} Input high voltage2.35.5 V_{hys} Input hysteresis0.15 V_{oL} Output low voltage3 mA sink current00.4 t_r Rise time for SDA and SCL20+0.1Cb3300	V V V
V_{hys} Input hysteresis 0.15 V_{oL} Output low voltage 3 mA sink current 0 0.4	V
V_{oL} Output low voltage 3 mA sink current 0 0.4	-
	V
t Pice time for SDA and SCI 20.0.1.0.1.0.13	
tr nise time for SDA and SGE 20+0.1GB 300	Ns
t_{of} Output fall time ViHmin \rightarrow ViLmax 10 pF < Cb ⁴ < 400 pF 20+0.1Cb 250	Ns
// Input current SCL/SDA 0.1 VDD < Vi < 0.9 VDD -10 10	μΑ
C _i Internal Capacitance for each SCL/SDA 50	pF
f _{SCL} SCL clock frequency 0 100	kHz
$R_{\rho u}$ External pull-up resistor $f_{SCL} \le 100 \text{ kHz}$ 1000 ns / Cb	Ω
t_{HDSTA} Hold time (repeated) START $f_{SCL} \le 100 \text{ kHz}$ 4.0	μs
t_{LOW} Low period of the SCL clock $f_{SCL} \le 100 \text{ kHz}$ 4.7	μs
t_{HIGH} High period of the SCL clock $f_{SCL} \le 100 \text{ kHz}$ 4.0	μS
t_{SUSTA} Setup time for a repeated START $f_{SCL} \le 100 \text{ kHz}$ 4.7	μs
t_{HDDAT} Data hold time $f_{SCL} \le 100 \text{ kHz}$ 0 3.45	μS
t_{SUDAT} Data setup time $f_{SCL} \le 100 \text{ kHz}$ 250	ns
<i>tsusto</i> Setup time for STOP condition $f_{SCL} \le 100 \text{ kHz}$ 4.0	μs
t_{BUF} Bus free time between STOP and START $f_{SCL} \le 100 \text{ kHz}$ 5	ms

Table 7. fC/SMBus Specification

³ Cb = Capacitance of bus line in pF, typically in the range of 10...400 pF

Asia-Pacific +86 755 298 85888 **Europe, Middle East** +353 61 225 977

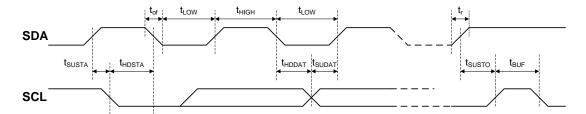


Figure 21. FC / SMBus Timing

8.13 ADDRESS / PROTOCOL SELECTION (APS)

The APS pin provides the possibility to select the address by connecting a resistor to V1 return (0 V). A fixed addressing offset exists between the Controller and the EEPROM.

NOTE:

- If the APS pin is left open, the supply will operate with the PMBUS protocol at controller / EEPROM addresses 0xB6 / 0xA6.
- The APS pin is only read at start-up of the power supply. Therefore it is not possible to change address dynamically.

R _{APS} (Ω) ⁴	Protocol	I2C Add	dress ⁵
MAPS (12)	Protocol	Controller	EEPROM
820		0xB0	0xA0
2700	PMBus™	0xB2	0xA2
5600	FIVIDUS	0xB4	0xA4
8200		0xB6	0xA6
15000		0xB0	0xA0
27000	PSMI	0xB2	0xA2
56000	PSIVII	0xB4	0xA4
180000		0xB6	0xA6

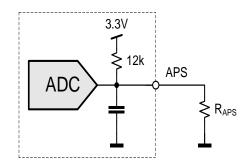


Figure 22. FC address and protocol setting

8.14 CONTROLER AND EEPROM ACCESS

The controller and the EEPROM in the power supply share the same I2C bus physical layer (see Figure 23). An I2C driver device assures logic level shifting (3.3/5 V) and a glitch-free clock stretching. The driver also pulls the SDA/SCL line to nearly 0 V when driven low by the DSP or the EEPROM providing maximum flexibility when additional external bus repeaters are needed. Such repeaters usually encode the low state with different voltage levels depending on the transmission direction.

The DSP will automatically set the I2C address of the EEPROM with the necessary offset when its own address is changed / set. In order to write to the EEPROM, first the write protection needs to be disabled by sending the appropriate command to the DSP. By default the write protection is on.

The EEPROM provides 256 bytes of user memory. None of the bytes are used for the operation of the power supply.

The LSB of the address byte is the R/W bit

E12 resistor values, use max 5% resistors, see also Figure 22

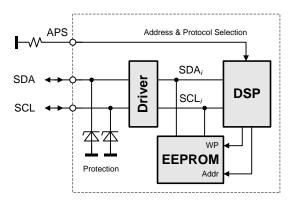


Figure 23. FC Bus to DPS and EEPROM

8.15 EEPROM PROTOCOL

The EEPROM follows the industry communication protocols used for this type of device. Even though page write / read commands are defined, it is recommended to use the single byte write / read commands.

WRITE

The write command follows the SMBus 1.1 Write Byte protocol. After the device address with the write bit cleared a first byte with the data address to write to is sent followed by the data byte and the STOP condition. A new START condition on the bus should only occur after 5ms of the last STOP condition to allow the EEPROM to write the data into its memory.

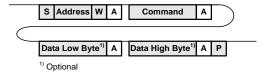
READ

The read command follows the SMBus 1.1 Read Byte protocol. After the device address with the write bit cleared the data address byte is sent followed by a repeated start, the device address and the read bit set. The EEPROM will respond with the data byte at the specified location.

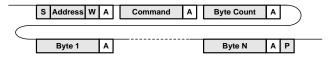
8.16 PMBUS™ PROTOCOL and PSMI PROTOCOL

PMBUS™ PROTOCOL

The Power Management Bus (PMBus™) is an open standard protocol that defines means of communicating with power conversion and other devices. For more information, please see the System Management Interface Forum web site at www.powerSIG.org.

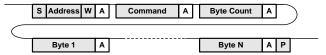

PMBus[™] command codes are not register addresses. They describe a specific command to be executed. The PFE1500-12-054 supply supports the following basic command structures:

- Clock stretching limited to 1 ms
- SCL low time-out of >25 ms with recovery within 10 ms
- Recognized any time Start/Stop bus conditions

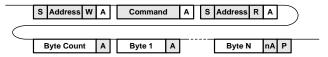


WRITE

The write protocol is the SMBus 1.1 Write Byte/Word protocol. Note that the write protocol may end after the command byte or after the first data byte (Byte command) or then after sending 2 data bytes (Word command).



In addition, Block write commands are supported with a total maximum length of 255 bytes. See PFE Programming Manual for further information.



READ

The read protocol is the SMBus 1.1 Read Byte/Word protocol. Note that the read protocol may request a single byte or word.

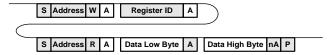
In addition, Block read commands are supported with a total maximum length of 255 bytes. See PFE Programming Manual BCA.00006 for further information.

PSMI PROTOCOL

New power management features in computer systems require the system to communicate with the power supply to access current, voltage, fan speed, and temperature information. Current measurements provide data to the system for determining potential system configuration limitations and provide actual system power consumption for facility planning. Temperature and fan monitoring allow the system to better manage fan speeds and temperatures for optimizing system acoustics. Voltage monitoring allows the system to calculate input wattage and warning of system voltage regulation problems. The Power Supply Management Interface (PSMI) supports diagnostic capabilities and allows managing of redundant power supplies. The communication method is SMBus. The current design guideline is version 2.12.

The communication protocol is register based and defines a read and write communication protocol to read / write to a single register address. All registers are accessed via the same basic command given below. No PEC (Packet Error Code) is used.

WRITE


The write protocol used is the SMBus 2.0 Write Word protocol. All writes are 16-bit words; byte reads are not supported nor allowed. The shaded areas in the figure indicate bits and bytes written by the PSMI master device. See PFE Programming Manual for further information.

READ

The read protocol used is the SMBus 2.0 Read Word protocol. All reads are 16-bit words; byte reads are not supported nor allowed. The shaded areas in the figure indicate bits and bytes written by the PSMI master device. See PFE Programming Manual for further information.

8.17 GRAPHICAL USER INTERFACE

Bel Power Solutions provides with its "Bel Power Solutions I2C Utility" a Windows® XP/Vista/Win7 compatible graphical user interface allowing the programming and monitoring of the PFE1500-12-054 Front-End. The utility can be downloaded on: www.belpowersolutions.com and supports PMBus™ protocols.

The GUI allows automatic discovery of the units connected to the communication bus and will show them in the navigation tree. In the monitoring view the power supply can be controlled and monitored.

If the GUI is used in conjunction with the SNP-OP-BOARD-01 or YTM.G1Q01.0 Evaluation Kit it is also possible to control the PSON_L pin(s) of the power supply.

Further there is a button to disable the internal fan for approximately 10 seconds. This allows the user to take input power measurements without fan consumptions to check efficiency compliance to the Climate Saver Computing Platinum specification.

The monitoring screen also allows to enable the hot-standby mode on the power supply. The mode status is monitored and by changing the load current it can be monitored when the power supply is being disabled for further energy savings. This obviously requires 2 power supplies being operated as a redundant system (as in the evaluation kit).

NOTE: The user of the GUI needs to ensure that only one of the power supplies have the hot-standby mode enabled.

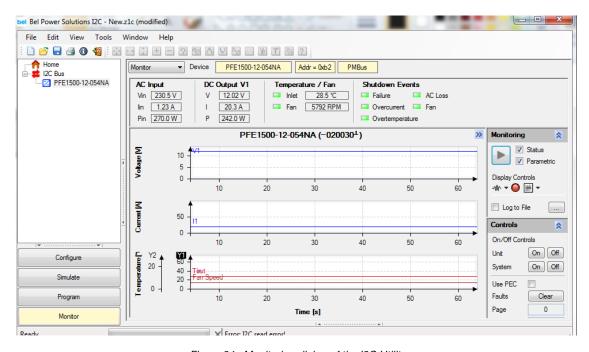


Figure 24. Monitoring dialog of the I2C Utility

Asia-Pacific +86 755 298 85888 **Europe, Middle East** +353 61 225 977

9. TEMPERATURE AND FAN CONTROL

To achieve best cooling results sufficient airflow through the supply must be ensured. Do not block or obstruct the airflow at the rear of the supply by placing large objects directly at the output connector. The PFE1500-12-054NA, PFE1500-12-054NAC and PFE1500-12-054NAH are provided with normal airflow, which means the air enters through the DC-output of the supply and leaves at the AC-inlet. PFE supplies have been designed for horizontal operation.

The fan inside of the supply is controlled by a microprocessor. The RPM of the fan is adjusted to ensure optimal supply cooling and is a function of output power and the inlet temperature.

For the normal airflow version additional constraints apply because of the AC-connector. In a normal airflow unit, the hot air is exiting the power supply unit at the AC-inlet.

The IEC connector on the unit is rated 105°C. If 70°C mating connector is used then end user must derated the input power to meet a maximum 70°C temperature at the front, see Figure 7 in above section.

NOTE: It is the responsibility of the user to check the front temperature in such cases. The unit is not limiting its power automatically to meet such a temperature limitation.

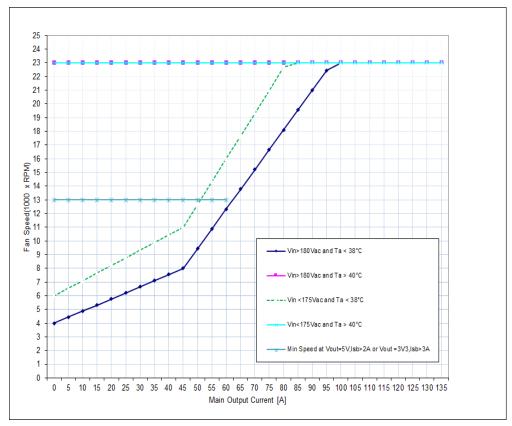


Figure 26. Fan speed vs. main output load

10. ELECTROMAGNETIC COMPATIBILITY

10.1 **IMMUNITY**

NOTE: Most of the immunity requirements are derived from EN 55024:1998/A2:2003.

PARAMETER	DESCRIPTION / CONDITION	CRITERION
ESD Contact Discharge	IEC / EN 61000-4-2, ±8 kV, 25+25 discharges per test point (metallic case, LEDs, connector body)	Α
ESD Air Discharge	IEC / EN 61000-4-2, ±15 kV, 25+25 discharges per test point (non-metallic user accessible surfaces)	Α
Radiated Electromagnetic Field	IEC / EN 61000-4-3, 10 V/m, 1 kHz/80% Amplitude Modulation, 1 μs Pulse Modulation, 10 kHz2 GHz	Α
Burst	IEC / EN 61000-4-4, level 3 AC port ±2 kV, 1 minute DC port ±1 kV, 1 minute	А
Surge	IEC / EN 61000-4-5 Line to earth: level 3, ±2 kV Line to line: level 2, ±1 kV	А
RF Conducted Immunity	IEC/EN 61000-4-6, Level 3, 10 Vrms, CW, 0.1 80 MHz	Α
Voltage Dips and Interruptions	IEC/EN 61000-4-11 1: Vi 230 V, 100% Load, Phase 0 °, Dip 100%, Duration 10 ms 2: Vi 230 V, 100% Load, Phase 0 °, Dip 100%, Duration 20 ms 3: Vi 230 V, 100% Load, Phase 0 °, Dip 100%, Duration >20 ms	A V _{SB} : A, V ₁ : B B

10.2 EMISSION

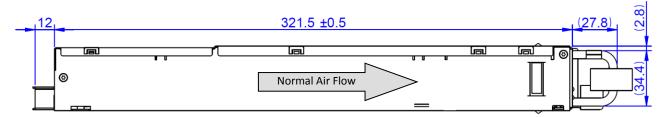
PARAMETER	DESCRIPTION / CONDITION	CRITERION
	EN55022 / CISPR 22: 0.15 30 MHz, QP and AVG, single unit	Class A
Conducted Emission	EN55022 / CISPR 22: 0.15 30 MHz, QP and AVG, 2 units in rack system	Class A
5	EN55022 / CISPR 22: 30 MHz 1 GHz, QP, single unit	Class A
Radiated Emission	EN55022 / CISPR 22: 30 MHz 1 GHz, QP, 2 units in rack system	Class A
Harmonic Emissions	IEC61000-3-2, Vin = 115 VAC / 60 Hz, & Vin = 230VAC/ 50 Hz, 100% Load	Class A
AC Flicker	IEC61000-3-3, Vin = 230 VAC / 60 Hz, 100% Load	Pass

11. SAFETY APPROVALS

Maximum electric strength testing is performed in the factory according to IEC/EN 60950, and UL 60950. Input-to-output electric strength tests should not be repeated in the field. Bel Power Solutions will not honor any warranty claims resulting from electric strength field tests.

PARAMETER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
Agency Approvals	UL 60950-1 Second Edition CAN/CSA-C22.2 No. 60950-1-07 Second Edition IEC 60950-1:2005 EN 60950-1:2006	inde	oproved by bendent body CE Declaration		
	Input (L/N) to case (PE)		Basic		
Isolation Strength	Input (L/N) to output	F	Reinforced		
	Output to case (PE)	F	unctional		
d- Croopage / Clearence	Primary (L/N) to protective earth (PE)	According to		According to	mm
dc Creepage / Clearance	Primary to secondary				mm
	Input to case	According to safety standard			
Electrical Strength Test	Input to output				kVAC
	Output and Signals to case				

12. ENVIRONMENTAL SPECIFICATIONS


PARAMETER		DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
T _A	Ambient Temperature	V_{min} to V_{max} , $I_{\text{1 nom}}$, $I_{\text{SB nom}}$ below 5000 feet Altitude	0		+45	°C
		\textit{N}_{min} to $\textit{N}_{\text{max}}, \textit{N}_{\text{1 nom}}, \textit{k}_{\text{B nom}}$ below 10,000 feet Altitude	0		+40	°C
\mathcal{T}_{Aext}	Extended Temp. Range	Derating output	+46		+60	°C
$\mathcal{T}_{\mathcal{S}}$	Storage Temperature	Non-operational	-20		+70	°C
	Altitude	Operational, above Sea Level, refer derating to Ta	-		10,000	Feet
N a	Audible Noise	$V_{1 \text{ nom}}$, 50% $I_{0 \text{ nom}}$, $T_{A} = 25^{\circ}\text{C}$		60		dBA

13, MECHANICAL SPECIFICATIONS

PARAM	METER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
		Width		54.5		
	Dimensions	Height		40.0		mm
		Depth		321.5		
M	Weight			1.13		kg

PFE1500-12-054NAH and PFE1500-12-054RAH: Input AC connector RongFeng RF-203-D-1.0

NOTE: A 3D step file of the power supply casing is available on request.

Figure 27. Side View 1

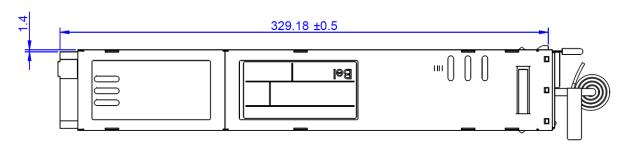


Figure 28. Top View



Figure 29. Side View 2

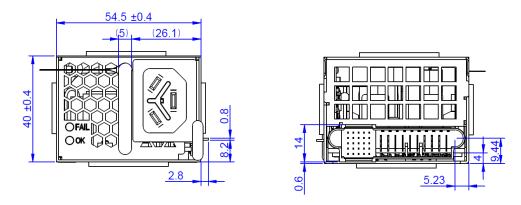
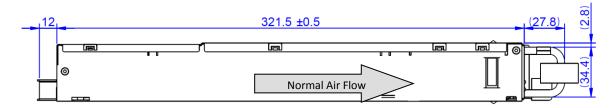



Figure 30. Front and Rear View

Asia-Pacific +86 755 298 85888 **Europe, Middle East** +353 61 225 977

PFE1500-12-054NA and PFE1500-12-054RA: C14 type Input AC connector RongFeng SS-120-1.0B-2.8BV or equivalent

NOTE: A 3D step file of the power supply casing is available on request. *Figure 31. Side View 1*

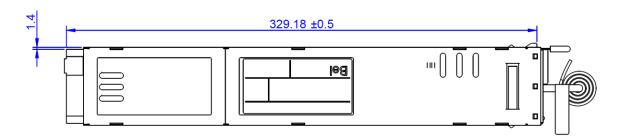


Figure 32. Top View

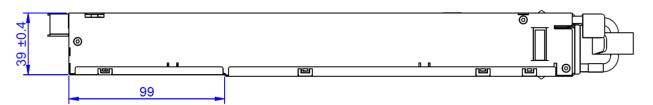


Figure 33. Side View 2

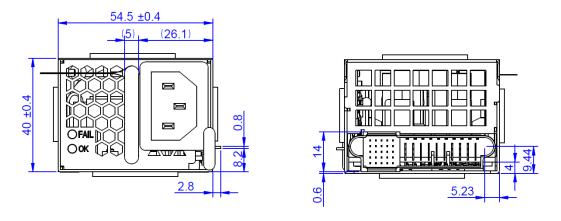
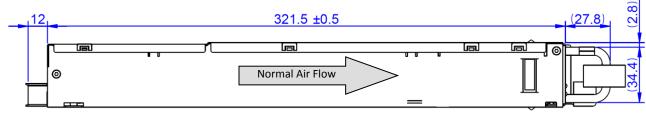



Figure 34. Front and Rear View

PFE1500-12-054NAC and PFE1500-12-054RAC: C16 Type Input AC connector, RongFeng SS-120B-1.0-4.0Ad or equivalent

 $\ensuremath{\text{NOTE:}}$ A 3D step file of the power supply casing is available on request.

Figure 35. Side View 1

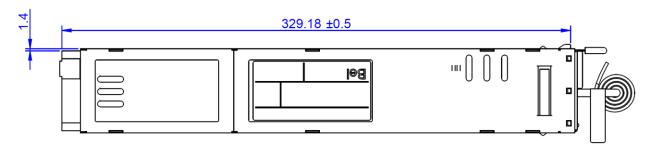


Figure 36. Top View

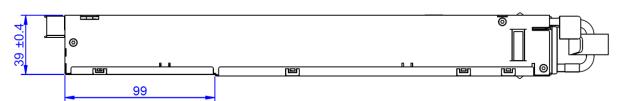


Figure 37. Side View 2

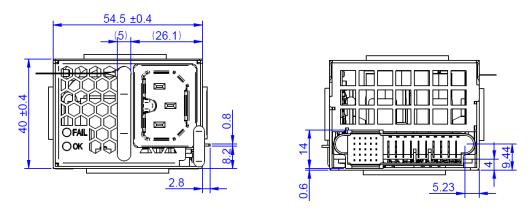


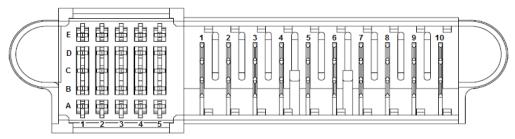
Figure 38. Front and Rear View

14. CONNECTIONS

AC input connector:

PFE1500-12-054NA/RA: Power supplier connector: IEC320 C14 type

PFE1500-12-054NAC/RAC: Power supplier connector: IEC320 C16 type


PFE1500-12-054NAH/RAH:

Power supplier connector: RongFeng P/N RF-203-D-1.0

Mating connector:

BizLink, type: BC-326, http://www.bizlinktech.com/ LongWell, type: LS-26, http://www.longwell.com/cn/ LINETEK, type: LS-24, http://w3.linetek.com.tw/html/F2 E.htm

DC output connector:

Power Supply Connector: Tyco Electronics P/N 2-1926736-3 (NOTE: Column 5 is recessed (short pins)) Mating Connector: Tyco Electronics P/N 2-1926739-5 or FCI 10108888-R10253SLF

PIN	NAME	DESCRIPTION
Output		
6, 7, 8, 9, 10	V1	+12 VDC main output
1, 2, 3, 4, 5	PGND	Power ground (return)
Control Pins		
A1	VSB	Standby positive output (+3.3/5 V)
B1	VSB	Standby positive output (+3.3/5 V)
C1	VSB	Standby positive output (+3.3/5 V)
D1	VSB	Standby positive output (+3.3/5 V)
E1	VSB	Standby positive output (+3.3/5 V)
A2	SGND	Signal ground (return)
B2	SGND	Signal ground (return)
C2	HOTSTANDBYEN_H	Hot standby enable signal: active-high
D2	VSB_SENSE_R	Standby output negative sense
E2	VSB_SENSE	Standby output positive sense
A3	APS	I ² C address and protocol selection (select by a pull down resistor)
B3	N/C	Reserved
C3	SDA	I ² C data signal line
D3	V1_SENSE_R	Main output negative sense
E3	V1_SENSE	Main output positive sense

A4	SCL	I ² C clock signal line
B4	PSON_L	Power supply on input (connect to A2/B2 to turn unit on): active-low
C4	SMB_ALERT_L	SMB Alert signal output: active-low
D4	N/C	Reserved
E4	ACOK_H	AC input OK signal: active-high
A5	PSKILL_H	Power supply kill (lagging pin): active-high
B5	ISHARE	Current share bus (lagging pin)
C5	PWOK_H	Power OK signal output (lagging pin): active-high
D5	VSB_SEL	Standby voltage selection (lagging pin)
E5	PRESENT_L	Power supply present (lagging pin): active-low

15, ACCESSORIES

ITEM	DESCRIPTION	ORDERING PART NUMBER	SOURCE
	Bel Power Solutions I²C Utility Windows XP/Vista/7 compatible GUI to program, control and monitor PFE Front-Ends (and other I ² C units)	N/A	belpowersolutions.com

Dual Connector Board

Connector board to operate 2 PFE units in parallel. Includes an on-board USB to I^2C converter (use *Bel Power Solutions f^2C Utility* as desktop software).

SNP-OP-BOARD-01 or YTM.G1Q01.0

belpowersolutions.com

Latch Lock

Optional latch lock to prevent accidental removal of the power supply from the system while the AC plug is engaged.

XSL.00019.0

Bel Power Solutions

For more information on these products consult: tech.support@psbel.com

NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

Asia-Pacific +86 755 298 85888 **Europe, Middle East** +353 61 225 977

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru