SCBS160C - DECEMBER 1992 - REVISED MAY 1997 - **Members of the Texas Instruments** Widebus™ Family - State-of-the-Art *EPIC-IIB™* BiCMOS Design Significantly Reduces Power Dissipation - Latch-Up Performance Exceeds 500 mA Per **JEDEC Standard JESD-17** - Typical V_{OLP} (Output Ground Bounce) $< 0.8 \text{ V at V}_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$ - **High-Impedance State During Power Up** and Power Down - Distributed V_{CC} and GND Pin Configuration **Minimizes High-Speed Switching Noise** - Flow-Through Architecture Optimizes PCB Layout - High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OI}) - Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package **Using 25-mil Center-to-Center Spacings** ### description The 'ABT16373A are 16-bit transparent D-type latches with 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. SN54ABT16373A . . . WD PACKAGE SN74ABT16373A . . . DGG OR DL PACKAGE (TOP VIEW) These devices can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs. A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components. OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state. When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. The SN54ABT16373A is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT16373A is characterized for operation from -40°C to 85°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated. # FUNCTION TABLE (each 8-bit section) | | INPUTS | OUTPUT | | | | |----|--------|--------|----------------|--|--| | OE | LE | D | Q | | | | L | Н | Н | Н | | | | L | Н | L | L | | | | L | L | Χ | Q ₀ | | | | Н | X | Χ | Z | | | # logic symbol† $[\]ensuremath{^{\dagger}}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. # logic diagram (positive logic) SCBS160C - DECEMBER 1992 - REVISED MAY 1997 # absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} | –0.5 V to 7 V | |--|-----------------| | Input voltage range, V _I (see Note 1) | –0.5 V to 7 V | | Voltage range applied to any output in the high or power-off state, VO | –0.5 V to 5.5 V | | Current into any output in the low state, IO: SN54ABT16373A | 96 mA | | SN74ABT16373A | 128 mA | | Input clamp current, I _{IK} (V _I < 0) | –18 mA | | Output clamp current, I _{OK} (V _O < 0) | –50 mA | | Package thermal impedance, θ _{JA} (see Note 2): DGG package | 89°C/W | | DL package | 94°C/W | | Storage temperature range, T _{stq} | –65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. # recommended operating conditions (see Note 3) | | | | SN54ABT | 16373A | SN74ABT | 16373A | LINUT | |-----------------|------------------------------------|-----------------|---------|--------|---------|--------|-------| | | | | MIN | MAX | MIN | MAX | UNIT | | Vcc | Supply voltage | | 4.5 | 5.5 | 4.5 | 5.5 | V | | VIH | High-level input voltage | | 2 | | 2 | | V | | V _{IL} | Low-level input voltage | | 0.8 | | 0.8 | V | | | ٧ _I | Input voltage | | 0 | Vcc | 0 | Vcc | V | | ЮН | High-level output current | | | -24 | | -32 | mA | | loL | Low-level output current | | | 48 | | 64 | mA | | Δt/Δν | Input transition rise or fall rate | Outputs enabled | | 10 | | 10 | ns/V | | Δt/ΔVCC | Power-up ramp rate | | 200 | | 200 | | μs/V | | TA | Operating free-air temperature | · | -55 | 125 | -40 | 85 | °C | NOTE 3: Unused inputs must be held high or low to prevent them from floating. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. ^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51. SCBS160C - DECEMBER 1992 - REVISED MAY 1997 ### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | Т | A = 25°C | | SN54ABT16373A | | SN74ABT16373A | | UNIT | |------------------|------------------|---|------------------------------|-----|----------|-------|---------------|------|---------------|------|------| | | ARAMETER | TEST CONDITIONS | | MIN | TYP† | MAX | MIN | MAX | MIN | MAX | UNIT | | VIK | | $V_{CC} = 4.5 \text{ V},$ | $I_{I} = -18 \text{ mA}$ | | | -1.2 | | -1.2 | | -1.2 | V | | | | $V_{CC} = 4.5 \text{ V},$ | $I_{OH} = -3 \text{ mA}$ | 2.5 | | | 2.5 | | 2.5 | | | | \/~ | | $V_{CC} = 5 V$, | $I_{OH} = -3 \text{ mA}$ | 3 | | | 3 | | 3 | | V | | VOH | | V _{CC} = 4.5 V | $I_{OH} = -24 \text{ mA}$ | 2 | | | 2 | | | | V | | | | VCC = 4.5 V | $I_{OH} = -32 \text{ mA}$ | 2* | | | | | 2 | | | | \/a: | | V _{CC} = 4.5 V | I _{OL} = 48 mA | | | 0.55 | | 0.55 | | | V | | VOL | | VCC = 4.5 V | I _{OL} = 64 mA | | | 0.55* | | | | 0.55 | V | | V _{hys} | | | | | 100 | | | | | | mV | | Ιį | | $V_{CC} = 0$ to 5.5 V
$V_I = V_{CC}$ or GNI | | | | ±1 | | ±1 | | ±1 | μА | | lozpu | _J ‡ | $V_{CC} = 0 \text{ to } 2.1 \text{ V}$
$V_{O} = 0.5 \text{ V to } 2.7 \text{ V}$ | /,
7 V, OE = X | | | ±50 | | ±50 | | ±50 | μА | | IOZPD | ,‡ | $V_{CC} = 2.1 \text{ V to } 0.5 \text{ V}$ | | | | ±50 | | ±50 | | ±50 | μΑ | | lozh | | V _{CC} = 2.1 V to 5
V _O = 2.7 V, OE 2 | | | | 10 | | 10 | | 10 | μΑ | | lozL | | $V_{CC} = 2.1 \text{ V to } 5$
$V_{O} = 0.5 \text{ V}, \overline{\text{OE}} \ge 0.5 \text{ V}$ | | | | -10 | | -10 | | -10 | μА | | l _{off} | | $V_{CC} = 0$, V_{I} or V | O ≤ 4.5 V | | | ±100 | | | | ±100 | μΑ | | ICEX | Outputs high | V _{CC} = 5.5 V, | V _O = 5.5 V | | | 50 | | 50 | | 50 | μΑ | | IO§ | | $V_{CC} = 5.5 \text{ V},$ | V _O = 2.5 V | -50 | -100 | -180 | -50 | -180 | -50 | -180 | mA | | | Outputs high | | • | | | 2 | | 2 | | 2 | | | ICC | Outputs low | $V_{CC} = 5.5 \text{ V, I}_{O} = 0,$
$V_{I} = V_{CC} \text{ or GND}$ | | | | 85 | | 85 | | 85 | mA | | | Outputs disabled | | | | | 2 | | 2 | | 2 | | | ΔICC¶ | | V _{CC} = 5.5 V, On
Other inputs at V | | | | 1.5 | | 1.5 | | 1.5 | mA | | Ci | | V _I = 2.5 V or 0.5 | V | | 3.5 | | | | | | pF | | Co | | V _O = 2.5 V or 0.5 | 5 V | | 9.5 | | | | | | pF | ^{*} On products compliant to MIL-PRF-38535, this parameter does not apply. ### timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1) | | | V _{CC} = 5 V,
T _A = 25°C [#] | | SN54ABT16373A | | SN74ABT16373A | | UNIT | |-----------------|-----------------------------|--|-----|---------------|-----|---------------|-----|------| | | | MIN | MAX | MIN | MAX | MIN | MAX | | | t _W | Pulse duration, LE high | 3.3 | | 3.3 | | 3.3 | | ns | | t _{su} | Setup time, data before LE↓ | 1.5 | | 2.4 | | 1.5 | | ns | | t _h | Hold time, data after LE↓ | 1 | | 2.2 | | 1 | | ns | [#]These values apply only to the SN74ABT16373A. [†] All typical values are at $V_{CC} = 5 \text{ V}$. [‡] This parameter is characterized, but not production tested. [§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second. $[\]P$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND. SCBS160C - DECEMBER 1992 - REVISED MAY 1997 switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V ₍ | CC = 5 V
4 = 25°C | /,
; | MIN | MAX | UNIT | |------------------|-----------------|----------------|----------------|----------------------|---------|-----|-----|------| | | | | MIN | TYP | MAX | | | | | t _{PLH} | D | Q | 1.4 | 3.7 | 5.3 | 1.4 | 6.5 | ns | | t _{PHL} | Б | Q | 2 | 4 | 5.4 | 2 | 6.5 | 115 | | ^t PLH | LE | Q | 1.7 | 4.1 | 5.7 | 1.7 | 7 | ns | | t _{PHL} | LL | Q | 2.3 | 4.3 | 5.6 | 2.3 | 6.3 | 115 | | ^t PZH | ŌĒ | Q | 1.1 | 3.4 | 5 | 1.1 | 6.4 | no | | t _{PZL} | OE | Q | 1.5 | 3.5 | 4.9 | 1.5 | 5.8 | ns | | ^t PHZ | ŌĒ | Q | 2.4 | 5.1 | 7.1 | 2.4 | 8.3 | ns | | t _{PLZ} | OE | l q | 1.6 | 4.4 | 6.3 | 1.6 | 8 | 115 | switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V ₍ | CC = 5 V
4 = 25°C | ',
; | MIN | MAX | UNIT | |------------------|-----------------|----------------|----------------|----------------------|---------|-----|-----|------| | | | | MIN | TYP | MAX | | | | | t _{PLH} | D | Q | 1.4 | 3.7 | 5.3 | 1.4 | 6.3 | ns | | t _{PHL} | U | Q | 2 | 4 | 5.4 | 2 | 6.2 | 110 | | t _{PLH} | LE | Q | 1.7 | 4.1 | 5.7 | 1.7 | 6.7 | ns | | ^t PHL | LL | γ | 2.3 | 4.3 | 5.6 | 2.3 | 6.1 | 115 | | ^t PZH | ŌĒ | Q | 1.1 | 3.4 | 5 | 1.1 | 6.1 | ns | | t _{PZL} | OE | Q | 1.5 | 3.5 | 4.9 | 1.5 | 5.6 | 115 | | ^t PHZ | ŌĒ | Q | 2.4 | 5.1 | 7.1 | 2.4 | 8.1 | ns | | t _{PLZ} | OE | Q | 1.6 | 4.4 | 5.8 | 1.6 | 6.5 | 115 | SCBS160C - DECEMBER 1992 - REVISED MAY 1997 #### PARAMETER MEASUREMENT INFORMATION NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{Q} = 50 Ω , t_{f} \leq 2.5 ns, t_{f} \leq 2.5 ns. - D. The outputs are measured one at a time with one transition per measurement. Figure 1. Load Circuit and Voltage Waveforms com 26-Sep-2005 #### PACKAGING INFORMATION | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |--------------------|-----------------------|-----------------|--------------------|------|----------------|----------------------------|------------------|------------------------------| | 5962-9320001QXA | ACTIVE | CFP | WD | 48 | 1 | TBD | Call TI | Level-NC-NC-NC | | 74ABT16373ADGGRE4 | ACTIVE | TSSOP | DGG | 48 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74ABT16373ADGGR | ACTIVE | TSSOP | DGG | 48 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74ABT16373ADL | ACTIVE | SSOP | DL | 48 | 25 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74ABT16373ADLR | ACTIVE | SSOP | DL | 48 | 1000 | Green (RoHS &
no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74ABT16373ADLRG4 | ACTIVE | SSOP | DL | 48 | 1000 | Green (RoHS &
no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SNJ54ABT16373AWD | ACTIVE | CFP | WD | 48 | 1 | TBD | Call TI | Level-NC-NC-NC | $^{(1)}$ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ### WD (R-GDFP-F**) #### **CERAMIC DUAL FLATPACK** #### **48 LEADS SHOWN** NOTES: A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package can be hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only - E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA GDFP1-F56 and JEDEC MO-146AB ### DL (R-PDSO-G**) #### **48 PINS SHOWN** #### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). D. Falls within JEDEC MO-118 # DGG (R-PDSO-G**) # PLASTIC SMALL-OUTLINE PACKAGE #### **48 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2005, Texas Instruments Incorporated OOO «ЛайфЭлектроникс" "LifeElectronics" LLC ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703 Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии. С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров #### Мы предлагаем: - Конкурентоспособные цены и скидки постоянным клиентам. - Специальные условия для постоянных клиентов. - Подбор аналогов. - Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям. - Приемлемые сроки поставки, возможна ускоренная поставка. - Доставку товара в любую точку России и стран СНГ. - Комплексную поставку. - Работу по проектам и поставку образцов. - Формирование склада под заказчика. - Сертификаты соответствия на поставляемую продукцию (по желанию клиента). - Тестирование поставляемой продукции. - Поставку компонентов, требующих военную и космическую приемку. - Входной контроль качества. - Наличие сертификата ISO. В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам. Конструкторский отдел помогает осуществить: - Регистрацию проекта у производителя компонентов. - Техническую поддержку проекта. - Защиту от снятия компонента с производства. - Оценку стоимости проекта по компонентам. - Изготовление тестовой платы монтаж и пусконаладочные работы. Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru