FEATURES
<2 ns Rise/Fall Times
Output Current: 120 mA
Single +5 V Power Supply
Switching Rate: 200 MHz typ
Onboard Light Power Control Loop

APPLICATIONS

Laser Printers and Copiers

GENERAL DESCRIPTION

T he AD 9661A is a highly integrated driver for laser diode applications such as printers and copiers. The AD 9661A gets feedback from an external photo detector and includes an analog feedback loop to allow users to set the power level of the laser, and switch the laser on and off at up to 100 M Hz . O utput rise
and fall times are 2 ns to complement printer applications that use image enhancing techniques such as pulse width modulation to achieve gray scale and resolution enhancement. Control signals are T TL/CM OS compatible.
The driver output provides up to 120 mA of current into an infrared N type laser, and the onboard disable circuit turns off the output driver and returns the light power control loop to a safe state.
The AD 9661A can also be used in closed-loop applications in which the output power level follows an analog POWER LEVEL voltage input. By optimizing the external hold capacitor and the photo detector, the loop can achieve bandwidths as high as 25 MHz .
The AD 9661A is offered in a 28-pin plastic SOIC for operation over the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$.

FUNCTIONAL BLOCK DIAGRAM

REV. 0

AD9661A- SPECIFICATIONS ${ }_{\left(V_{\mathrm{s}}=+5 v, \text {, emperature }=+25^{\circ} \text { u mess sthenisise nteal) }\right)}$

Parameter	Test Level	Temp	AD9661AKR			Units	Conditions
			Min	Typ	Max		
ANALOG INPUT							
Input Voltage Range, POWER LEVEL	IV	Full	$\mathrm{V}_{\text {ReF }}$		$\mathrm{V}_{\text {ReF }}+1.6$	V	
Input Bias Current, POWER LEVEL	I	$+25^{\circ} \mathrm{C}$	-50		+50	$\mu \mathrm{A}$	
Analog Bandwidth, Control Loop ${ }^{1}$	V	$+25^{\circ} \mathrm{C}$		25		M Hz	$\mathrm{C}_{\text {HOLD }}=33 \mathrm{pF}, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{F}}=2 \mathrm{pF}$
Input Voltage Range, LEVEL SHIFT IN	IV	Full	0.1		1.6		
Input Bias Current, LEVEL SHIFT IN	I	$+25^{\circ} \mathrm{C}$	-10		0	$\mu \mathrm{A}$	
Analog Bandwidth, Level Shift ${ }^{2}$	V	Full		130		M Hz	
L evel Shift Offset	I	$+25^{\circ} \mathrm{C}$	-32		+32	mV	
Level Shift Gain	1	$+25^{\circ} \mathrm{C}$	0.95	1.0	1.05	V N	
OUTPUTS							
Output C urrent, I I ${ }_{\text {Out }}$	I	$+25^{\circ} \mathrm{C}$	120			mA	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$
Output Compliance Range	IV	$+25^{\circ} \mathrm{C}$	2.50		5.25	V	
Idle C urrent	I	$+25^{\circ} \mathrm{C}$		2	5.0	mA	PULSE $=$ LOW, DISABLE $=$ LOW
D isable Current	IV	$+25^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$	PULSE $=$ LOW, DISABLE $=$ HIGH
SWITCHING PERFORMANCE							
M aximum Pulse Rate	V	$+25^{\circ} \mathrm{C}$		200		M Hz	Output Current-3 dB
Output Propagation D elay ($\mathrm{tpo}_{\text {P }}$), Rising ${ }^{3}$	IV	Full	2.9	3.9	5.0	ns	
Output Propagation D elay ($\mathrm{tpD}^{\text {) , F }}$ Falling ${ }^{3}$	IV	Full	3.2	3.7	4.3	ns	
Output Current Rise T ime ${ }^{4}$	IV	Full		1.5	2.0	ns	
Output Current F all T ime ${ }^{5}$	IV	Full		1.5	2.0	ns	
$\overline{\text { CAL }}$ A perture D elay ${ }^{6}$	IV	Full		13		ns	
Disable Time ${ }^{7}$	IV	$+25^{\circ} \mathrm{C}$		3	5	ns	
HOLD NODE							
Input Bias C urrent	I	$+25^{\circ} \mathrm{C}$	-200		200	nA	$\mathrm{V}_{\text {HOLD }}=2.5 \mathrm{~V}$
Input Voitage Range	IV	Full	$\mathrm{V}_{\text {ReF }}$		$\mathrm{V}_{\text {REF }}+1.6$	V	Open-Loop Application Only
M inimum External Hold Cap	V	Full		25		pF	
Logic "1" Voltage	1	$+25^{\circ} \mathrm{C}$	2.0			V	
Logic "1" Voltage	IV	Full	2.0			V	
Logic " 0 " Voltage	I	$+25^{\circ} \mathrm{C}$			0.8	V	
Logic "0" Voltage	IV	Full			0.8	V	
Logic "1" C urrent	I	$+25^{\circ} \mathrm{C}$	-10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {HIGH }}=5.0 \mathrm{~V}$
Logic "0" Current	1	$+25^{\circ} \mathrm{C}$	-1.5			mA	$\mathrm{V}_{\text {Low }}=0.8 \mathrm{~V}$
BANDGAP REFERENCE							
Output Voltage ($\mathrm{V}_{\text {REF }}$)	I	$+25^{\circ} \mathrm{C}$	1.6	1.8	1.9		
T emperature C oefficient	V	$+25^{\circ} \mathrm{C}$		-0.1		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Output Current	V	$+25^{\circ} \mathrm{C}$	-0.5		1.0	mA	
SENSEIN							
Current Gain	I	$+25^{\circ} \mathrm{C}$	0.95	1	1.02	$\mathrm{mA} / \mathrm{mA}$	
Voltage	I	$+25^{\circ} \mathrm{C}$	0.7	1.0	1.3		
Input Resistance	V	$+25^{\circ} \mathrm{C}$		<150			
POWER SUPPLY							
+ $\mathrm{V}_{\text {S }}$ Voltage	I	$+25^{\circ} \mathrm{C}$	4.75	5.00	5.25	V	
$+\mathrm{V}_{5} \mathrm{C}$ urrent	I	$+25^{\circ} \mathrm{C}$		75	95	mA	$\begin{aligned} & \text { DISABLE }=\text { HIGH }, V_{\text {HOLD }}=V_{\text {REF }}, \\ & V_{S}=5.0 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1}$ Based on rise time of closed-loop pulse response. See Performance Curves.
${ }^{2}$ Based on rise time of pulse response.
${ }^{3}$ Propagation delay measured from the 50% of the rising/falling transition of WRITE PULSE to the 50% point of the rising/falling edge of the output modulation current.
${ }^{4}$ Rise time measured between the 10% and 90% points of the rising transition of the modulation current.
${ }^{5}$ F all time measured between the 10% and 90% points of the falling transition of the modulation current.
${ }^{6}$ A perture D elay is measured from the 50% point of the rising edge of WRITE PULSE to the time when the output modulation begins to recalibrate, WRITE CAL is held during this test.
${ }^{7}$ D isable T ime is measured from the 50% point of the rising edge of DISABLE to the 50% point of the falling transition of the output current. F all time during disable is similar to fall time during normal operation.
${ }^{8}$ PULSE, PULSE2, DISABLE, and CAL are TTL/CM OS compatible inputs.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

+V V $_{\text {. }+6 \text { V }}$
POWER LEVEL, LEVEL SHIFT IN 0 V to $+V_{S}$
TTL/CMOS INPUTS -0.5 V to $+\mathrm{V}_{S}$
Output Current . 200 mA
Operating T emperature
AD 9661AKR $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage T emperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
M aximum Junction T emperature $+150^{\circ} \mathrm{C}$
Lead Soldering Temp (10 sec) $+300^{\circ} \mathrm{C}$
*Absolute maximum ratings are limiting values, to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied. Exposure of absolute maximum rating conditions for extended periods of time may affect device reliability.

EXPLANATION OF TEST LEVELS

Test Level
I - 100\% production tested.
II -100% production tested at $+25^{\circ} \mathrm{C}$, and sample tested at specified temperatures.
III - Sample tested only.
IV - Parameter is guaranteed by design and characterization testing.
V - Parameter is a typical value only.
VI - All devices are 100% production tested at $+25^{\circ} \mathrm{C} ; 100 \%$ production tested at temperature extremes for military devices; sample tested at temperature extremes for commercial/industrial devices.

ORDERING GUIDE

Model	Temperature Range	Package Option
AD 9661AK R	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	R-28
AD 9661AK R-REEL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	R-28 (1000/Reel)

Equivalent Circuits

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 9661A features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN DESCRIPTIONS

Pin	Function
OUTPUT	A nalog laser diode current output. Connect to cathode of laser diode, anode connected to $+\mathrm{V}_{\mathrm{S}}$ externally.
POWER LEVEL	Analog voltage input, $\mathrm{V}_{\text {REF }}$ to $\mathrm{V}_{\text {REF }}+1.6 \mathrm{~V}$. Output current is set proportional to the POWER LEVEL during calibration as follows: $I_{\text {MONITOR }}=\frac{V_{\text {POWER LEVEL }}-V_{\text {REF }}}{R_{\text {GAIN }}+50 \Omega}$
$\overline{\text { CAL }}$	TTL/CMOS compatible, feedback loop T/H control signal. Logic LOW enables calibration mode, and the feedback loop T/H goes into track mode 13 ns after (the aperture delay) PU LSE goes logic HIG H (there is no aperture delay if PULSE goes high before CAL transitions to a LOW level). Logic HIGH disables the T/H and immediately places it in hold mode. PULSE should be held HIGH while calibrating. Floats logic HIGH.
HOLD	External hold capacitor for the bias loop T / H. Approximate droop in the output current while CAL is logic HIGH is: $\pm \Delta \mathrm{I}_{\text {OUT }}=\frac{18 \times 10^{-9} \mathrm{t}_{\text {HOLD }}}{\mathrm{C}_{\text {HOLD }}}$ Bandwidth of the loop is: $B W \approx \frac{1}{2 \pi(550 \Omega) C_{\text {HOLD }}}$
PULSE	TTL/CM OS compatible, current control signal. Logic HIGH supplies Iout to the laser diode. Logic LOW turns Iout off. F loats logic HIGH.
$\overline{\text { PULSE } 2}$	TTL/CM OS compatible, current control signal. Logic LOW supplies I Out to the laser diode. Logic HIGH turns lout off. Floats logic HIGH.
SENSE IN	Analog current input, Imonitor, from PIN photo detector diode. SENSE IN should be connected to the anode of the PIN diode, with the PIN cathode connected to $+\mathrm{V}_{5}$ or another positive voltage. Voltage at SEN SE IN varies slightly with temperature and current, but is typically 1.0 V .
GAIN	External connection for the feedback network of the transimpedance amplifier. External feedback network, $R_{\text {GAIN }}$ and C $_{\text {GAIN, }}$, should be connected between GAIN and POWER M ONIT OR. See text for choosing values.
POWER MONITOR	Output voltage monitor of the internal feedback loop. Voltage is proportional to feedback current from photo diode, $I_{\text {monitor. }}$.
DISABLE	TTL/CM OS compatible, current output disable circuit. Logic LOW for normal operation; logic HIGH disables the current outputs to the laser diode, and drives the voltage on the hold capacitors close to $\mathrm{V}_{\text {REF }}$ (minimizes the output current when the device is re-enabled). DISABLE floats logic HIGH.
$\mathrm{V}_{\text {REF }}$	Analog V oltage output, internal bandgap voltage reference, $\sim 1.8 \mathrm{~V}$, provided to user for power level offset.
+V $\mathrm{V}_{\text {S }}$	Power Supply, nominally +5 V . All $+\mathrm{V}_{5}$ connections should be tied together externally.
GROUND	Ground reference. All GROUND connections should be tied together externally.
LEVEL SHIFT IN	A nalog input to the on board level shift circuit. Input Range $0.1 \mathrm{~V}-1.6 \mathrm{~V}$.
LEVEL SHIFT OUT	Voltage output from on board level shift circuit. Connect to POWER LEVEL externally to use the on board level shift circuit. Output voltage is $\mathrm{V}_{\text {Level shift out }}=\mathrm{V}_{\text {Level shift in }}+\mathrm{V}_{\text {Ref }}$.

PIN ASSIGNME NTS
PULSE2 1
dNC 2
$V_{\text {REF }}-3$
LEVEL SHIFT IN 4 GAIN 5 POWER MONITOR 6

SENSE INPUT 7
GROUND 8
$+\mathrm{V}_{\mathrm{s}} 9$
Ground 10 hold 11

POWER LEVEL 12 LEVEL SHIFT OUT 13
disable 14
$28+V_{s}$
27 GROUND
26 OUTPUT
25 GROUND
24 output
23 GRound
22 OUTPUT
21 GROUND
20 OUTPUT
19 GRound
$18+\mathrm{V}_{\mathrm{s}}$
17 GROUND
16 CAL
15 PULSE1

THEORY OF OPERATION

The AD 9661A combines a very fast output current switch with an onboard analog light power control loop to provide the user with a complete laser diode driver solution. The block diagram illustrates the key internal functions. The control loop of the AD 9661A adjusts the output current level, I IOUT, so that the photo diode feedback current, $\mathrm{I}_{\text {MONITOR }}$, into SEN SE IN is proportional to the analog input voltage at POWER LEVEL. Since the monitor current is proportional to the laser diode light power, the loop effectively controls laser power to a level proportional to the analog input. The control loop should be periodically calibrated (see Choosing $\mathrm{C}_{\text {ноид }}$).
The disable circuit turns off $I_{\text {OUT }}$ and returns the hold capacitor voltages to their minimum levels (minimum output current) when DISABLE $=$ logic HIGH. It is used during initial power up of the AD 9661A or during time periods where the laser is inactive. When the AD 9661A is re-enabled the control loop must be recalibrated.
N ormal operation of the AD 9661A involves the following (in order, see Figure 1):

1. The AD 9661A is enabled (DISABLE = logic LOW).
2. The input voltage (POWER LEVEL) is driven to the appropriate level to set the calibrated laser diode output power level.
3. The feedback loop is closed for calibration ($\overline{\text { CAL }}=$ logic LOW, and PULSE = logic HIGH), and then opened ($\overline{\mathrm{CAL}}$ $=$ logic HIGH).
4. While the feedback loop is open, the laser is pulsed on and off by PULSE.
5. The feedback loop is periodically recalibrated as needed.
6. The AD 9661A is disabled when the laser will not be pulsed for an indefinite period of time.

Control Loop Transfer Function

The relationship between $I_{\text {monitor }}$ and $V_{\text {power level }}$ is

$$
\mathrm{I}_{\text {M ONITOR }}=\frac{\mathrm{V}_{\text {POWER LEVEL }}-\mathrm{V}_{\text {REF }}}{\left(\mathrm{R}_{\text {GAIN }}+50 \Omega\right)}
$$

once the loop is calibrated. When the loop is open ($\overline{\mathrm{CAL}}=$ logic HIGH), the output current, I Iout, is proportional to the held voltage at HOLD ; the external hold capacitor on this pin determines the droop error in the output current between calibrations.

The sections below discuss choosing the external components in the feedback loop for a particular application.

Choosing $\mathbf{R}_{\text {GAIN }}$

The gain resistor, $\mathrm{R}_{\text {Gain }}$, allows the user to match the feedback loop's transfer function to the laser diode/photo diode combination.
The user should define the maximum laser diode output power for the intended application, P LD max $^{\text {a }}$ and the corresponding photo diode monitor current, I I monitormax. A typical Iaser diode transfer function is illustrated below. $\mathrm{R}_{\text {GAIN }}$ should be chosen as:

$$
\mathrm{R}_{\text {GAIN }}=\frac{1.6 \mathrm{~V}}{\mathrm{I}_{\text {MONITORMAX }}}-50 \Omega
$$

Figure 2. Laser Diode Current-to-Optical Power Curve

Figure 1. Normal Operating Mode

AD9661A

The laser diode's output power will then vary from 0 to $P_{\text {LD max }}$ for an input range of $\mathrm{V}_{\text {REF }}$ to $\mathrm{V}_{\text {REF }}+1.6 \mathrm{~V}$ @ the POWER LEVEL input.
M inimum specifications for $I_{\text {Monitor max }}$ should be used when choosing $R_{\text {GAIN }}$. U sers are cautioned that laser diode/photo diode combinations that produce monitor currents that are less than $I_{\text {monitormax }}$ in the equation above will produce higher laser output power than predicted, which may damage the laser diode. Such a condition is possible if $\mathrm{R}_{\text {GAIN }}$ is calculated using typical instead of minimum monitor current specifications. In that case the input range to the AD 9661A POWER LEVEL input should be limited to avoid damaging laser diodes.
A nother approach would be to use a potentiometer for $\mathrm{R}_{\text {GAIN }}$. This allows users to optimize the value of $\mathrm{R}_{\text {GAIN }}$ for each laser diode/photo diode combination's monitor current. The drawback to this approach is that potentiometers' stray inductance and capacitance may cause the transimpedance amplifier to overshoot and degrade its settling, and the value of $\mathrm{C}_{\text {GAIN }}$ may not be optimized for the entire potentiometer's range.
$\mathrm{C}_{\text {GAIN }}$ optimizes the response of the transimpedance amplifier and should be chosen as from the table below. Choosing $\mathrm{C}_{\text {GAIN }}$ larger than the recommended value will slow the response of the amplifier. Lower values improve T ZA bandwidth but may cause the amplifier to oscillate.

Table I.

$\mathbf{R}_{\text {GAIN }}$	Recommended $\mathbf{C}_{\text {GAIN }}$
$2.5 \mathrm{k} \Omega$	2 pF
$1.5 \mathrm{k} \Omega$	3 pF
$1 \mathrm{k} \Omega$	4 pF
500Ω	8 pF

Choosing $\mathrm{C}_{\text {Hold }}$

C hoosing values for the hold capacitor, $\mathrm{C}_{\text {HOLD }}$, is a tradeoff between output current droop when the control loop is open, and the time it takes to calibrate and recalibrate the laser power when the loop is closed.
The amount of output current droop is determined by the value of the hold capacitor and the leakage current at that node.
When the control loop is open ($\overline{\mathrm{CAL}}$ logic HIGH), the pin connection for the hold capacitor (HOLD) is a high impedance input. Leakage current will range from ± 200; this low current minimizes the droop in the output power level. Assuming the worst case current of $\pm 200 \mathrm{nA}$, the output current will change as follows:

$$
\pm \Delta \mathrm{I}_{\text {OUT }}=\frac{18 \times 10^{-9}}{\mathrm{C}_{\text {HOLD }}}
$$

To choose a value, the user will need to determine the amount of time the loop will be in hold mode, $\mathrm{t}_{\text {HOLD }}$, the maximum change in laser output power the application can tolerate, and the laser efficiency (defined as the change in laser output power to the change in laser diode current). As an example, if an application requires 5 mW of laser power $\pm 5 \%$, and the laser diode efficiency is $0.25 \mathrm{~mW} / \mathrm{mA}$, then

$$
\Delta \mathrm{l}_{\mathrm{MAX}}=5 \mathrm{~mW} \times(5 \%) /\left(0.25 \frac{\mathrm{~mW}}{\mathrm{~mA}}\right)=10 \mathrm{~mA}
$$

If the same application had a hold time requirement of $250 \mu \mathrm{~s}$, then the minimum value of the hold capacitor would be:

$$
\mathrm{C}_{\text {HOLD }}=\frac{18 \times 10^{-9} \times 250 \mu \mathrm{~S}}{1.0 \mathrm{~mA}}=4.5 \mathrm{nF}
$$

When determining the calibration time, the T / H and the external hold capacitor can be modeled using the simple RC circuit illustrated below.

Figure 3. Circuitry Model for Determining Calibration Times U sing this model, the voltage at the hold capacitor is

$$
\mathrm{V} \mathrm{C}_{\text {HOLD }}=\mathrm{V}_{\mathrm{t}=0}+\left(\mathrm{V}_{\mathrm{t}=\infty}-\mathrm{V}_{\mathrm{t}=0}\right)\left(1-\mathrm{e}^{-\mathrm{t}}\right)
$$

where $t=0$ is when the calibration begins ($\overline{\text { CAL }}$ goes logic $\mathrm{LOW}), \mathrm{V}_{\mathrm{t}=0}$ is the voltage on the hold cap at $\mathrm{t}=0, \mathrm{~V}_{\mathrm{t}=\infty}$ is the steady state voltage at the hold cap with the loop closed, and $\tau=\mathrm{R}_{\mathrm{C}_{\text {HO }}}$ is the time constant. With this model the error in $\mathrm{V}_{\mathrm{C}_{\text {HoLD }}}$ for a finite calibration time, as compared to $\mathrm{V}_{\mathrm{t}=\infty}$, can be estimated from the following table and chart:

Table II.

$\mathbf{t}_{\text {calibration }}$	\% Final Value	Error \%
7τ	99.9	0.09
6τ	99.7	0.25
5τ	99.2	0.79
4τ	98.1	1.83
3τ	95.0	4.97
2τ	86.5	13.5
τ	63.2	36.8

Figure 4. Calibration Time
Initial calibration is required after power-up or any other time the laser has been disabled. Disabling the AD 9661A drives the hold capacitor to $\approx V_{\text {REF }}$. In this case, or in any case where the output current is more than 10% out of calibration, R will range from 300Ω to 550Ω for the model above; the higher value should be used for calculating the worst case calibration time. F ollowing the example above, if $\mathrm{C}_{\text {hold }}$ were chosen as 4.5 nF , then $\tau=\mathrm{RC}=550 \Omega \times 4.5 \mathrm{nF}$ would be $2.48 \mu \mathrm{~s}$. For an initial calibration error $<1 \%$, the initial calibration time should be $>5 \tau=12.36 \mu \mathrm{~s}$.

Initial calibration time will actually be better than this calculation indicates, as a significant portion of the calibration time will be within 10% of the final value, and the output resistance in the AD 9660's T/H decreases as the hold voltage approaches its final value.
Recalibration is functionally identical to initial calibration, but the loop need only correct for droop. Because droop is assumed to be a small percentage of the initial calibration ($<10 \%$), the resistance for the model above will be in the range of 75Ω to 140Ω. Again, the higher value should be used to estimate the worst case time needed for recalibration.

C ontinuing with the example above, since the droop error during hold time is $<5 \%$, we meet the criteria for recalibration and $\tau=\mathrm{RC}=140 \Omega \times 4.5 \mathrm{nF}=0.64 \mu \mathrm{~s}$. T o get a final error of 1% after recalibration, the 5% droop must be corrected to within a 20% error $(20 \% \times 5 \%=1 \%)$. A 2τ recalibration time of $1.2 \mu \mathrm{~s}$ is sufficient.

Continuous Recalibration

In applications where the hold capacitor is small ($<500 \mathrm{pF}$) and the WRITE PULSE signals always have a pulse width > 25 ns , the user may continuously calibrate the feedback loop. In such an application, the $\overline{\text { CAL }}$ signal should be held logic LOW, and the PULSE signal will control loop calibration via the internal AND gate. In such application, it is important to optimize the layout for the TZA (POWER M ONITOR, GAIN, R ${ }_{\text {GAIN }}$ and $C_{\text {GAIN }}$).

Driving the Analog Inputs

The POWER LEVEL input of the AD 9661A drives the track and hold amplifier and allows the user to adjust the amount of output current as described above. T he input voltage range is $\mathrm{V}_{\text {REF }}$ to $\mathrm{V}_{\text {REF }}+1.6 \mathrm{~V}$, requiring the user to create an offset of $\mathrm{V}_{\text {REF }}$ for a ground based signal (see below for description of the on board level shift circuit). The circuit below will perform the level shift and scale the output of a DAC whose output is from ground to a positive voltage. This solution is especially attractive because both the DAC and the op amp can run off a single +5 V supply, and the op amp doesn't have to swing rail to rail.

Figure 5. Driving the Analog Inputs

Using the Level Shift Circuit

The AD 9661A includes an on board level shift circuit to provide the offset described above. The input, LEVEL SHIFT IN, has an input range from 0.1 V to 1.6 V . The output, LEVEL SHIFT OUT, has a range from $\mathrm{V}_{\text {REF }}$ to $\mathrm{V}_{\text {REF }}+1.6 \mathrm{~V}$, and can drive POWER M ONIT OR. The linearity of the level shift circuit is poor for inputs below 100 mV . Between 100 mV and 1.6 V it is about 7 bits accurate.

Layout Considerations

As in all high speed applications, proper layout is critical; it is particularly important when both analog and digital signals are involved. A nalog signal paths should be kept as short as possible, and isolated from digital signals to avoid coupling in noise. In particular, digital lines should be isolated from OUTPUT, SENSE IN, POWER LEVEL, LEVEL SHIFT IN POWER M ONITOR, and HOLD traces. Digital signal paths should also be kept short, and run lengths matched to avoid propagation delay mismatch.
Layout of the ground and power supply circuits is also critical. A single, low impedance ground plane will reduce noise on the circuit ground. Power supplies should be capacitively coupled to the ground plane to reduce noise in the circuit. $0.1 \mu \mathrm{~F}$ surface mount capacitors, placed as close as possible to the AD 9661A $+V_{S}$ connections, and the $+V_{S}$ connection to the laser diode meet this requirement. M ultilayer circuit boards allow designers to lay out signal traces without interrupting the ground plane, and provide low impedance power planes to further reduce noise.

AD9661A

Minimizing the Impedance of the Output Current Path

Because of the very high current slew that the AD 9661A is capable of producing ($120+\mathrm{mA}$ in 1.5 ns), the inductance of the output current path to and from the laser diode is critical. A good layout of the output current path will yield high quality light pulses with rise times of about 1.5 ns and less than 5\% overshoot. A poor layout can result in significant overshoot and ringing. The most important guideline for the layout is to minimize the impedance (mostly inductance) of the output current path to the laser.
It is important to recognize that the laser current path is a closed loop. The figure illustrates the path that current travels: (1) from the $+\mathrm{V}_{\mathrm{S}}$ connection at the anode of the laser to the cathode (2) from the cathode to the output pins of the AD 9661A (3) through the output drive circuit of the AD 9661A, (4) through the return path (GROUND plane in the illustration) (5) through the bypass capacitors back to the $+\mathrm{V}_{\mathrm{S}}$ connection of the laser diode. The inductance of this loop can be minimized by placing the laser as close to the AD 9661A as possible to keep the loop short, and by placing the send and return paths on adjacent layers of the PC board to take advantage of mutual coupling of the path inductances. This mutual coupling effect is the most important factor in reducing inductance in the current path.

The trace from the output pins of the AD 9661A to the cathode of the laser should be several millimeters wide and should be as direct as possible. T he return current will choose the path of least resistance. If the return path is the GROUND plane, it should have an unbroken path, under the output trace, from the laser anode back to a the AD 9661A. If the return path is not the ground plane (such as on a two layer board, or on the $+\mathrm{V}_{\mathrm{S}}$ plane), it should still be on the board plane adjacent to the plane of the output trace. If the current cannot return along a path that follows the output trace, the inductance will be drastically increased and performance will be degraded.

Optimizing the Feedback Layout

In applications where the dynamic performance of the analog feedback loop is important, it is necessary to optimize the layout of the gain resistor, $\mathrm{R}_{\text {GAIN }}$, as well as the monitor current path to SEN SE IN. Such applications include systems which recalibrate the write loop on pulses as short as 25 ns , and closed-loop applications.
The best possible T ZA settling will be achieved by using a single carbon surface mount resistor (usually 5% tolerance) for $R_{\text {GAIN }}$ and small surface mount capacitor for $\mathrm{C}_{\text {GAIN }}$. Because the GAIN pin (Pin 5) is essentially connected to the inverting input of the TZA, it is very sensitive to stray capacitance. $\mathrm{R}_{\text {GAIN }}$ should be placed between Pin 5 and Pin 6 , as close as possible to Pin 5 . Small traces should be used, and the ground and $+\mathrm{V}_{\mathrm{S}}$ planes adjacent to the trace should be removed to further minimize stray capacitance.

The trace from SEN SE IN to the anode of the PIN photodetector should be thin and routed away from the laser cathode trace.

Example Calculations

The example below (in addition to the one included in the sections above) should guide users in choosing $R_{\text {GAIN }}, C_{\text {GAIN }}$, the hold capacitor values, and worst case calibration times.
System Requirements:

- Laser power: $4 \mathrm{~mW} \pm 2 \%$
- H old Time: 0.5 ms

L aser diode/photo diode characteristics:

- L aser efficiency $0.3 \mathrm{~mW} / \mathrm{mA}$
- M onitor current : $0.2 \mathrm{~mA} / \mathrm{mW}$
- From the laser power requirements and efficiency we can estimate:

$$
\Delta \mathrm{I}_{\text {OUT } \mathrm{MAX}}=4 \mathrm{~mW} \times(2.0 \%) /\left(0.3 \frac{\mathrm{~mW}}{\mathrm{~mA}}\right)=266.6 \mu \mathrm{~A} .
$$

Figure 6. Laser Diode Current Loop

- Choosing a hold caps based on this:

$$
C_{\text {HOLD }}=\frac{18 \times 10^{-9} \times 0.5 \mathrm{~ms}}{266.6 \mu \mathrm{~A}}=0.034 \mu \mathrm{~F}
$$

- The initial calibration time for $<0.1 \%$ error:
$7 \tau=7 \times R C=7 \times 550 \Omega \times 0.034 \mu \mathrm{~F}=130.9 \mu \mathrm{~S}$
- Recalibration for a 0.1% error after 2% droop (need to correct within 5\%):

$$
3 \tau=3 \mathrm{RC}=3 \times 140 \Omega \times 0.034 \mu \mathrm{~F}=14.28 \mu \mathrm{~S}
$$

- From the monitor current specification and the max power specified:

$$
\mathrm{I}_{\text {MONITOR MAX }}=4 \mathrm{~mW} \frac{0.2 \mathrm{~mA}}{\mathrm{~mW}}=800 \mu \mathrm{~A}
$$

and

$$
\mathrm{R}_{\text {GAIN }}=\frac{1.6 \mathrm{~V}}{\mathrm{l}_{\text {MONITOR MAX }}}-50 \Omega=2.0 \mathrm{k} \Omega
$$

- $C_{\text {GAIN }}$ would be chosen from the table as 3 pF for safe compensation.

Typical Performance Characteristics

Figure 7. Driving 78N20 Laser Diode @ 5 mW

AD9661A- Typical Performance Characteristics

Figure 8. Typical AD9661A V/I Transfer Function

Figure 9. Typical AD9661A Closed-Loop Pulse Response

AD9661A EVALUATION BOARD

T he AD 9661A Evaluation Board is comprised of two printed circuit boards. The L aser D iode D river (LDD) Resource B oard is both a digital pattern generator and an analog reference generator (see LDD Resource Board Block Diagram.) The board is controlled by an IBM compatible personal computer through a standard printer cable. The resource board interfaces to the AD 9661A DUT board, which contains the AD 9661A, a level shift circuit for the analog input, and a socket for an N type
laser diode. A dummy load circuit for the laser diode is included for evaluation. Power for all the boards is provided through the banana jacks on the AD 9661A DUT board. These should be connected to a linear, +5 V power supply. Schematics for the LDD Resource Board, AD 9661A DUT, and D ummy Load are included, along with a bill of material and layout information. Please contact Applications for additional information.

Figure 10. LDD Resource Board Block Diagram

Figure 11. Evaluation Board Block Diagram

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).
28-Pin Plastic SOIC
(R-28)

LifeElectronics
Живое партнерство

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

> Тел: +7 (812) 3364304 (многоканальный)
> Email: org@lifeelectronics.ru

