General Description

The 840001I-34 is a two output LVCMOS/LVTTL Synthesizer. One output is the LVCMOS/LVTTL main synthesized clock output (Q) and one output is a three-state LVCMOS/LVTTL reference clock (REF_OUT) output at the frequency of the crystal oscillator. The device can accept crystals from 15.3125MHz to 42.67MHz and can synthesize outputs from 81.67MHz to 213.33MHz. The 840001I-34 is packaged in a 3mm x 3mm 16-pin VFQFN, making it ideal for use on space constrained boards.

Common Application Configuration Table

Features

- Two LVCMOS/LVTTL outputs, 22Ω typical output impedance One main clock output (Q) One three-state reference clock output (REF_OUT)
- Crystal oscillator interface can accept crystals from 15.3125MHz to 42.67MHz, 18pF parallel resonant crystal
- Q output frequency range: 81.67MHz to 213.33MHz
- RMS phase jitter @106.25, (637kHz 10MHz): 0.38ps (typical)
- VCO range: 490MHz to 640MHz
- Full 3.3V and 2.5V operating supply
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

	Inp	uts		Output Frequency	
Crystal (MHz)	M Divider	VCO (MHz)	N Divider	(MHz)	Application
40	15	600	6	100 (default)	Serial Attached (SCSI), PCI Express, Processor Clock
26.5625	24	637.5	6	106.25	Fibre Channel
40	15	600	4	150	Serial ATA (SATA), Processor Clock
26.5625	24	637.5	3	212.5	Fibre Channel 2
25	25	625	5	125	Ethernet
25	25	625	4	156.25	10 Gigabit Ethernet
22.5	25	562.5	3	187.5	12 Gigabit Ethernet
19.44	32	622.08	4	155.52	SONET

Block Diagram

Number	Name	Ту	ре	Description
1	OE	Input	Pullup	Output enable pin. When HIGH, REF_OUT output is enabled. When LOW, forces REF_OUT to Hi-Z state. See Table 3A. LVCMOS/LVTTL interface levels.
2, 3	XTAL_IN, XTAL_OUT	Input		Crystal oscillator interface. XTAL_IN is the input. XTAL_OUT is the output.
4, 5	M0, M1	Input	Pullup	M divider inputs. LVCMOS/LVTTL interface levels. See Table 3B.
6, 14, 15	nc	Unused		No connect.
7, 8	No, N1	Input	Pullup	Determines output divider value as defined in Table 3C. LVCMOS/LVTTL interface levels.
9	V _{DD}	Power		Core supply pin.
10	GND	Power		Power supply ground.
11	V _{DDO}	Power		Output supply pin.
12	Q	Output		Single-ended clock output. 22Ω typical output impedance. LVCMOS/LVTTL interface levels.
13	REF_OUT	Output		Single-ended three-state reference clock output. 22 Ω typical output impedance. LVCMOS/LVTTL interface levels.
16	V _{DDA}	Power		Analog supply pin.

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
C _{PD}	Power Dissipation Capacitance	$V_{DD,} V_{DDO} = 3.465 V$		8		pF
	Tower Dissipation Capacitance	$V_{DD,} V_{DDO} = 2.625 V$		6		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{OUT}	Output Impedance	$V_{DD,} V_{DDO} = 3.3V \pm 5\%$	14	22	30	Ω
		$V_{DD,} V_{DDO} = 2.5V\pm5\%$	16	26	36	Ω

Table 3A. Control Input Function Table

Control Input	Output
OE	REF_OUT
0	Hi-Z
1	Active (default)

Table 3B. M Divider Function Table

Contro	l Inputs	
M1	МО	Feedback Divider Ratio
0	0	÷32
0	1	÷25
1	0	÷24
1	1	÷15 (default)

Table 3C. N Divider Function Table

Contro	Inputs	
N1	N0	Output Divider Ratio
0	0	÷3
0	1	÷4
1	0	÷5
1	1	÷6 (default)

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V _{DD} + 0.5V
Outputs, V _O	-0.5V to V _{DD} + 0.5V
Package Thermal Impedance, θ_{JA}	76.1°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, V_{DD} = V_{DDO} = 3.3V \pm 5%, T_{A} = -40°C to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		V _{DD} – 0.12	3.3	V _{DD}	V
V_{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current				100	mA
I _{DDA}	Analog Supply Current				12	mA
I _{DDO}	Output Supply Current				35	mA

Table 4B. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDA}	Analog Supply Voltage		V _{DD} – 0.12	3.3	V _{DD}	V
V _{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current				90	mA
I _{DDA}	Analog Supply Current				12	mA
I _{DDO}	Output Supply Current				25	mA

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage		$V_{DD} = 3.3V$	2		V _{DD} + 0.3	V
			V _{DD} = 2.5V	1.7		V _{DD} + 0.3	V
		oltaga	V _{DD} = 3.3V	-0.3		0.8	V
V _{IL} Input Low Voltage	ollage	V _{DD} = 2.5V	-0.3		0.7	V	
I _{IH}	Input High Current	OE, M0, M1, N0, N1	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			5	μA
I _{IL}	Input Low Current	OE, M0, M1, N0, N1	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$	-150			μA
V	Output High	Voltage;	$V_{DDO} = 3.3V \pm 5\%$	2.6			V
NOTE 1			$V_{DDO} = 2.5V \pm 5\%$	1.8			V
V _{OL}	Output Low Voltage; NOTE		V _{DDO} = 3.3V±5% or 2.5V±5%			0.5	V

Table 4C. LVCMOS/LVTTL DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $T_A = -40^{\circ}$ C to 85° C

NOTE 1: Outputs terminated with 50 Ω to V_{DDO}/2. See Parameter Measurement Information, *Output Load Test Circuit diagrams.*

Table 5. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation			Fundamental		
Frequency		15.3125		42.67	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW

NOTE: It is not recommended to overdrive the crystal input with an external clock.

AC Electrical Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency		81.67		213.33	MHz
tjit(Ø)	RMS Phase Jitter, Random; NOTE 1	100MHz, Integration Range: 637kHz – 10MHz		0.54		ps
		106.25MHz, Integration Range: 637kHz – 10MHz		0.38		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	200		700	ps
odc	Output Duty Cycle	Q, N = 3	40		60	%
		Q, N ≠ 3	48		52	%
		REF_OUT	48		52	%

Table 6A. AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to 85°

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. Device will meet specifications after thermal equilibrium has been reached under these conditions

NOTE 1: Please refer to Phase Noise Plot.

Table 6B. AC Characteristics, V_{DD} = V_{DDO} = 2.5V ± 5%, T_A = -40°C to 85°

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency		81.67		213.33	MHz
<i>t</i> jit(Ø)	RMS Phase Jitter, Random; NOTE 1	100MHz, Integration Range: 637kHz – 10MHz		0.54		ps
		106.25MHz, Integration Range: 637kHz – 10MHz		0.38		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	300		800	ps
odc	Output Duty Cycle	Q, N = 3	35		65	%
		Q, N ≠ 3	40		60	%
		REF_OUT	45		55	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. Device will meet specifications after thermal equilibrium has been reached under these conditions

NOTE 1: Please refer to Phase Noise Plot.

Typical Phase Noise at 100MHz (3.3V)

Typical Phase Noise at 106.25MH#s(3.3V)ncy (Hz)

Offset Frequency (Hz)

Parameter Measurement Information

3.3V LVCMOS Output Load AC Test Circuit

RMS Phase Jitter

Output Rise/Fall Time

2.5V LVCMOS Output Load AC Test Circuit

Application Information

Power Supply Filtering Technique

To achieve optimum jitter performance, power supply isolation is required. The ICS40001I-34 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD}, V_{DDA} , and V_{DDO} should be individually connected to the power supply plane through vias, and $0.01 \mu F$ bypass capacitors should be used for each pin. *Figure 1* illustrates this for a generic V_{DD} pin and also shows that V_{DDA} requires that an additional 10Ω resistor along with a $10 \mu F$ bypass capacitor be connected to the V_{DDA} pin.

Figure 1. Power Supply Filtering

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pull-ups; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Outputs:

LVCMOS Output

All unused LVCMOS output can be left floating. There should be no trace attached.

Crystal Input Interface

The 840001I-34 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 26.5625MHz, 18pF

Figure 2. Crystal Input Interface

parallel resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 4*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific and dependent upon the package power

dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Leadframe Base Package, Amkor Technology.

Figure 4. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 16 Lead VFQFN

θ_{JA} at 0 Air Flow					
Meters per Second	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	76.1°C/W	66.5	59.7		

Transistor Count

The transistor count for 840001I-34 is: 2805

Package Outline and Package Dimensions

Package Outline - K Suffix for 16 Lead VFQFN

Table 8. Package Dimensions

JEDEC Variation: VEED-2/-4 All Dimensions in Millimeters						
Symbol	Minimum	Maximum				
N		16				
Α	0.80	1.00				
A1	0	0.05				
A3	0.25	5 Ref.				
b	0.18	0.30				
N _D & N _E	4					
D & E	3.00 Basic					
D2 & E2	1.00	1.80				
е	0.50 Basic					
L	0.30 0.50					

Reference Document: JEDEC Publication 95, MO-220

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
840001AKI-34LF	AI4L	"Lead-Free" 16 Lead VFQFN	Tray	-40°C to 85°C
840001AKI-34LFT	AI4L	"Lead-Free" 16 Lead VFQFN	Tape & Reel	-40°C to 85°C

Revision History Sheet

Rev	Table	Page	Description of Change	Date
		11	Updated VFQFN EPAD Thermal Release Path section.	
А		13	Updated Package Drawing.	10/27/08
	9	14	Ordering Information Table - corrected Temperature column.	
		1	Deleted HiPerClockS references.	
۸	T5	5	Crystal Characteristics Table - added note.	10/10/10
A		9	Deleted application note, LVCMOS to XTAL Interface.	10/16/12
	Т9	13	Deleted quantity from tape and reel. Deleted Lead-Free note.	
А			Removed ICS from the part number where needed. Updated data sheet header and footer.	1/15/16

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com

Sales

1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales

Tech Support www.idt.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners.

For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary.

Copyright ©2016 Integrated Device Technology, Inc. All rights reserved.

ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www.lifeelectronics.ru