

Freescale Semiconductor

Data Sheet: Technical Data

i.MX25 Applications Processor for Consumer and Industrial Products

Silicon Version 1.2

Document Number: IMX25CEC Rev. 10, 07/2013

Package Information Plastic package Case 5284 17 x 17 mm, 0.8 mm Pitch Case 2107 12 x 12 mm, 0.5 mm Pitch

Ordering Information

See [Table 1](#page-2-1) [on page 3](#page-2-1) for ordering information.

1 Introduction

The i.MX25 multimedia applications processor has the right mix of high performance, low power, and integration to support the growing needs of the industrial and general embedded markets.

At the core of the i.MX25 is Freescale's fast, proven, power-efficient implementation of the ARM® 926EJ-S™ core, with speeds of up to 400 MHz. The i.MX25 includes support for up to 133 MHz DDR2 memory, integrated 10/100 Ethernet MAC, and two on-chip USB PHYs. The device is suitable for a wide range of applications, including the following:

- Graphical remote controls
- Human Machine Interface (HMI)
- Residential and commercial control panels
- Residential gateway (smart metering)
- Handheld scanners and printers
- Electronic point-of-sale terminals
- Patient-monitoring devices

Features of the i.MX25 processor include the following:

- Advanced power management—The heart of the device is a level of power management throughout the IC that enables the multimedia features and peripherals to achieve minimum system power consumption in active and various low-power modes. Power management techniques allow the designer to deliver a feature-rich product that requires levels of power far lower than typical industry expectations.
- Multimedia powerhouse—The multimedia performance of the i.MX25 processor is boosted by a 16 KB L1 instruction and data cache system and further enhanced by an LCD controller (with alpha blending), a CMOS image sensor interface, an A/D controller (integrated touchscreen controller), and a programmable Smart DMA (SDMA) controller.
- 128 Kbytes on-chip SRAM—The additional 128 Kbyte on-chip SRAM makes the device ideal for eliminating external RAM in applications with small footprint RTOS. The on-chip SRAM allows the designer to enable an ultra low power LCD refresh.
- Interface flexibility—The device interface supports connection to all common types of external memories: MobileDDR, DDR, DDR2, NOR Flash, PSRAM, SDRAM and SRAM, NAND Flash, and managed NAND.
- Increased security—Because the need for advanced security for tethered and untethered devices continues to increase, the i.MX25 processor delivers hardware-enabled security features that enable secure e-commerce, Digital Rights Management (DRM), information encryption, robust tamper detection, secure boot, and secure software downloads.
- On-chip PHY—The device includes an HS USB OTG PHY and FS USB HOST PHY.
- Fast Ethernet—For rapid external communication, a Fast Ethernet Controller (FEC) is included.
- i. MX25 only supports Little Endian mode.

1.1 Ordering Information

[Table 1](#page-2-1) provides ordering information for the i.MX25.

Table 1. Ordering Information

Description	Part Number	Silicon Version	Projected Temperature Range (°C)	Package	Ballmap
i.MX253	MCIMX253DVM4	1.1	-20 to $+70$	17 x 17 mm, 0.8 mm pitch, MAPBGA-400	Table 103
i.MX257	MCIMX257DVM4	1.1	-20 to $+70$	17 x 17 mm, 0.8 mm pitch, MAPBGA-400	Table 103
i.MX253	MCIMX253CVM4	1.1	-40 to $+85$	17 x 17 mm, 0.8 mm pitch, MAPBGA-400	Table 103
i.MX257	MCIMX257CVM4	1.1	-40 to $+85$	17 x 17 mm, 0.8 mm pitch, MAPBGA-400	Table 103
i.MX258	MCIMX258CVM4	1.1	-40 to $+85$	17 x 17 mm, 0.8 mm pitch, MAPBGA-400	Table 103
i.MX253	MCIMX253DJM4	1.1	-20 to $+70$	17 x 17 mm, 0.8 mm pitch, MAPBGA-400	Table 103
i.MX257	MCIMX257DJM4	1.1	-20 to $+70$	17 x 17 mm, 0.8 mm pitch, MAPBGA-400	Table 103
i.MX253	MCIMX253CJM4	1.1	-40 to $+85$	17 x 17 mm, 0.8 mm pitch, MAPBGA-400	Table 103
i.MX257	MCIMX257CJM4	1.1	-40 to $+85$	17 x 17 mm, 0.8 mm pitch, MAPBGA-400	Table 103
i.MX258	MCIMX258CJM4	1.1	-40 to $+85$	17 x 17 mm, 0.8 mm pitch, MAPBGA-400	Table 103
i.MX253	MCIMX253DJM4A	1.2	-20 to $+70$	17 x 17 mm, 0.8 mm pitch, MAPBGA-400	Table 103
i.MX257	MCIMX257DJM4A	1.2	-20 to $+70$	17 x 17 mm, 0.8 mm pitch, MAPBGA-400	Table 103
i.MX257	MCIMX257DJM4AR2	1.2	-20 to $+70$	17 x 17 mm, 0.8 mm pitch, MAPBGA-400	Table 103
i.MX253	MCIMX253CJM4A	1.2	-40 to $+85$	17 x 17 mm, 0.8 mm pitch, MAPBGA-400	Table 103
i.MX257	MCIMX257CJM4A	1.2	-40 to $+85$	17 x 17 mm, 0.8 mm pitch, MAPBGA-400	Table 103
i.MX258	MCIMX258CJM4A	1.2	-40 to $+85$	17 x 17 mm, 0.8 mm pitch, MAPBGA-400	Table 103
i.MX257	MCIMX257CJN4A	1.2	-40 to $+85$	12 x 12mm, 0.5mm pitch, MAPBGA-347	Table 107

Table 2 shows the functional differences between the different parts in the i.MX25 family. **Table 2. i.MX25 Parts Functional Differences**

1.2 Block Diagram

[Figure 1](#page-4-1) shows the simplified interface block diagram.

Figure 1. i.MX25 Simplified Interface Block Diagram

2 Features

[Table 3](#page-5-1) describes the digital and analog modules of the device.

Table 3. i.MX25 Digital and Analog Modules

 $\overline{}$

2.1 Special Signal Considerations

Special signal considerations are listed in [Table 4.](#page-8-1) The package contact assignment is found in [Section 4,](#page-123-0) ["Package Information and Contact Assignment.](#page-123-0)" Signal descriptions are provided in the reference manual.

Table 4. Signal Considerations

 $\overline{}$

3 Electrical Characteristics

This section provides the device-level and module-level electrical characteristics for the i.MX25.

3.1 i.MX25 Chip-Level Conditions

This section provides the chip-level electrical characteristics for the IC.

3.1.1 DC Absolute Maximum Ratings

[Table 5](#page-10-2) provides the DC absolute maximum operating conditions.

CAUTION

- Stresses beyond those listed under [Table 5](#page-10-2) may cause permanent damage to the device.
- Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- [Table 5](#page-10-2) gives stress ratings only—functional operation of the device is not implied beyond the conditions indicated in [Table 6.](#page-10-3)

Table 5. DC Absolute Maximum Ratings

3.1.2 DC Operating Conditions

[Table 6](#page-10-3) provides the DC recommended operating conditions.

Table 6. DC Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units
Core supply voltage (at 266 MHz)	QV_{DD}	1.15	1.34	1.52	v
Core supply voltage (at 400 MHz)	QV_{DD}	1.38	1.45	1.52	v
Coin battery BAT_VDD	V _{DD} BAT	1.15		1.55	v
I/O supply voltage, GPIO NFC,CSI,SDIO	NV _{DD_GPIO1}	1.75		3.6	v

Table 6. DC Operating Conditions (continued)

 $\frac{1}{1}$ V_{DD_BAT} must always be powered by battery in security application. In non-security case, V_{DD_BAT} can be connected to QV_{DD} .

 2 The fusebox read supply is connected to supply of the full speed USBPHY2_VDD. FUSE_VDD is only used for programming. It is recommended that FUSE_VDD be connected to ground when not being used for programming. See [Table 7](#page-12-0) for current parameters.

 3 NVCC_DRYICE is a supply output. An external capacitor no less than 4 μ F must be connected to it. A 4.7 μ F capacitor is recommended.

3.1.3 Fusebox Supply Current Parameters

[Table 7](#page-12-0) lists the fusebox supply current parameters.

Table 7. Fusebox Supply Current Parameters

Parameter	Symbol	Min.	Typ.	Max.	Units
eFuse program current' Current to program one eFuse bit The associated VDD_FUSE supply = 3.6 V	' program	26	35	62	mA
eFuse read current ² Current to read an 8-bit eFuse word	I read		12.5	15	mA

 $\frac{1}{1}$ The current I_{program} is during program time (t_{program}).

² The current I_{read} is present for approximately 50 ns of the read access to the 8-bit word.

3.1.4 Interface Frequency Limits

Table 8 provides information for interface frequency limits.

Table 8. Interface Frequency Limits

Table 9 provides the recommended external crystal specifications.

Table 9. Recommended External Crystal Specifications

Table 10 provides the recommended external reference clock oscillator specifications (when reference is used from an external clock source).

Table 10. Recommended External Reference Clock Specifications

Table 10. Recommended External Reference Clock Specifications (continued)

3.1.5 USB_PHY Current Consumption

[Table 11](#page-13-0) provides information for USB_PHY current consumption.

Table 11. USB PHY Current Consumption1

Parameter	Conditions		Typ.	Max. (@Typ. Temp) (@Max. Temp)	Unit
Analog supply		Rx	11.4		
USBPHY1_VDDA_BIAS, USBPHY1_UPLL_VDD, USBPHY1_VDDA (3.3 V)	Full speed	Tx	22,6		mA
		Rx	21.5		
	High speed	Tx	33.8		
	Suspend		0.6		μA
Analog supply		Rx	120		μA
USBPHY2_VDD (3.3 V)	Full Speed	Tx	25		lmA
		Rx	252		μA
	Low Speed	Tx	5.5		mA
All supplies	Suspend		50	100	μA

¹ Values must be verified

3.1.6 Power Modes

[Table 12](#page-13-1) describes the core, clock, and module settings for the different power modes of the processor.

Table 12. i.MX25 Power Mode Settings

Core/Clock/Module	Power Mode								
	Doze	Wait	Stop/Sleep ¹	Run (266 MHz)	Run (400 MHz)				
ARM core	Platform clock is off	In wait-for-interrupt mode		Active @ 266 MHz	Active @ 400 MHz				
Well bias	On	Off	On	Off	Off				
MCU PLL	On	On	Off	On	On				
USB PLL	Off	Off	Off	On	On				
OSC24M	On	On	Off	On	On				
OSC32K	On	On	On	On	On				
Other modules	Off	Off	Off	On	On				

¹ Sleep mode differs from stop mode in that the core voltage is reduced to 1 V.

[Table 13](#page-14-0) shows typical current consumption for the various power supplies under the various power modes.

Power Group	Power Supplies	Voltage	Current Consumption for Power Modes¹					
		Setting	Doze	Wait	Stop	Sleep		
NVCC_EMI	NVCC_EMI1 NVCC EMI2	3.0 V	$5 \mu A$	$3.15 \mu A$	$3.51 \mu A$	$3.61 \mu A$		
NVCC_CRM	NVCC_CRM	3.0V	$1.15 \mu A$	4.31 μ A	$0.267 \mu A$	$0.32 \mu A$		
NVCC OTHER	NVCC_SDIO NVCC_CSI NVCC NFC NVCC_JTAG NVCC_LCDC NVCC_MISC	3.0V	$31.2 \mu A$	$29.5 \mu A$	$31.7 \mu A$	$32.1 \mu A$		
NVCC ADC	NVCC_ADC	3.0V	$163 \mu A$	$3.25 \mu A$	1.14 μ A	$0.871 \mu A$		
OSC24M	OSC24M_ VDD	3.0V	906 μA	903 µA	10.2 μ A mA	10.5 μ A		
PLL_VDD	MPLL VDD UPLL_VDD	1.4V	6.83 mA	6.83 mA	$38.9 \mu A$	$39.1 \mu A$		
QVDD	QVDD	1.15V	8.79 mA	11.28 mA	842 µA	665 µA		
USBPHY1_ VDDA	USBPHY1_ VDDA	3.17V	$240 \mu A$	240 µA	$241 \mu A$	242 µA		
USBPHY1 VDDA VBIAS	USBPHY1 VDDA VBIAS	3.17V	$0.6 \mu A$	1.46 μ A	$0.328 \mu A$	$0.231 \mu A$		
USBPHY1 UPLL_VDD	USBPHY1 UPLL_VDD	3.17 V	$201 \mu A$	$201 \mu A$	191 μ A	191 μ A		
USBPHY2	USBPHY2_ VDD	3.0V	158 µA	$0158 \mu A$	164 μ A	164 μ A		

Table 13. i.MX25 Power Mode Current Consumption

 $\frac{1}{1}$ Values are typical, under typical use conditions.

In the reduced power mode, shown in [Table 14](#page-15-1), the i.MX25 is powered down, while the RTC clock and the secure keys (in secure-use case), remain operational. BAT_VDD is tied to a battery while all other supplies are turned off.

NOTE

In this low-power mode, i.MX25 cannot be woken up with an interrupt; it must be powered back up before it can detect any events.

3.2 Supply Power-Up/Power-Down Requirements and Restrictions

Any i.MX25 board design must comply with the power-up and power-down sequence guidelines given in this section to ensure reliable operation of the device. Recommended power-up and power-down sequences are given in the following subsections.

CAUTION

Deviations from the guidelines in this section may result in the following situations:

- Excessive current during power-up phase
- Prevention of the device from booting
- Irreversible damage to the i.MX25 (worst-case scenario)

NOTE

For security applications, the coin battery must be connected during both power-up and power-down sequences to ensure that security keys are not unintentionally erased.

3.2.1 Power-Up Sequence

For those users that are not using DryIce/SRTC, the following power-up sequence is recommended:

- 1. Assert power on reset (POR).
- 2. Turn on QVDD digital logic domain supplies.
- 3. Turn on NVCCx digital I/O power supplies after QVDD is stable.
- 4. Turn on all other analog power supplies, including USBPHY1_VDDA_BIAS, USBPHY1_UPLL_VDD, USBPHY1_VDDA, USBPHY2_VDD, OSC24M_VDD, MPPLL_VDD, UPLL_VDD, NVCC_ADC, and FUSEVDD (FUSEVDD is tied to GND if fuses are not programmed), after all NVCCx digital I/O supplies are stable.
- 5. Negate the POR signal.

NOTE

- The user is advised to connect FUSEVDD to GND except when fuses are programmed, to prevent unintentional blowing of fuses.
- Other power-up sequences may be possible; however, the above sequence has been verified and is recommended.
- There is a 1 ms minimum time between supplies coming up, and a 1 ms minimum time between POR B assert and de-assert.
- The dV/dT should be no faster than 0.25 V/ μ s for all power supplies, to avoid triggering ESD circuit.

[Figure 2](#page-16-0) shows the power-up sequence diagram. After POR_B is asserted, Core VDD and NVDDx can be powered up. After Core VDD and NVDDx are stable, the analog supplies can be powered up.

Figure 2. Power-Up Sequence Diagram

3.2.2 Power-Down Sequence

There are no special requirements for the power-down sequence. All power supplies can be shut down at the same time.

3.2.3 SRTC DryIce Power-Up/Down Sequence

In order to guarantee DryIce power-loss protection, including retention of SRTC time data during power down, users must do the following:

- Place a proper capacitor on the NVCC_DRYICE output pin, and
- Implement the below power-up/down sequence
- 1. Assert power on reset (POR).
- 2. Turn on NVCC_CRM.
- 3. Turn on QVDD digital logic domain supplies for not less than 1 ms and not more than 32 ms, after NVCC_CRM reaches 90% of 3.3 V.

NOTE

This is to guarantee that POR is stable already at NVCC_CRM/QVDD power domain interface before QVDD is turned on, and POR instantly propagates to QVDD domain after QVDD is turned on.

- 4. Turn on other NVCCx digital I/O power supplies for not less than 1 ms and not more than 32 ms, after QVDD reaches 90% of 1.2 V.
- 5. Turn on all other analog power supplies, including USBPHY1_VDDA_BIAS, USBPHY1_UPLL_VDD, USBPHY1_VDDA, USBPHY2_VDD, NVCC_ADC, OSC24M_VDD, MPPLL_VDD, UPLL_VDD, and FUSEVDD (FUSEVDD is tied to GND if fuses are not programmed) for not less than 1 ms and not more than 32 ms, after NVCCx reaches 90% of 3.3 V.

NOTE

This is to guarantee that analog peripherals can get properly initialized (reset) values from QVDD domain and NVCCx domain.

6. Negate the POR signal for at least 90 μs after all previous steps.

NOTE

- This is to guarantee that both POR logic and clocks are stable inside the i.MX25 chip, before POR is removed.
- The dV/dT should be no faster than 0.25 V/us for all power supplies, to avoid triggering ESD circuit.

In addition, the following power-down sequence is recommended:

- 1. Turn off power for analog parts, including USBPHY1_VDDA_BIAS, USBPHY1_UPLL_VDD, USBPHY1_VDDA, USBPHY2_VDD, NVCC_ADC, and FUSEVDD (FUSEVDD is tied to GND if fuses are not programmed).
- 2. Turn off QVDD.
- 3. Turn off NVCCx, PLL, OSC, and other powers.

NOTE

The power-down steps can be executed simultaneously, or very shortly one after another.

3.3 Power Characteristics

[Table 15](#page-18-0) shows values representing maximum current numbers for the i.MX25 under worst case voltage and temperature conditions. These values are derived from the i.MX25 with core clock speed up to 400 MHz. Additionally, no power saving techniques such as clock gating were implemented when measuring these values. Common supplies are bundled according to the i.MX25 power-up sequence requirements. Peak numbers are provided for system designers so that the i.MX25 power supply requirements are satisfied during startup and transient conditions. Freescale recommends that system

current measurements are taken with customer-specific use-cases to reflect the normal operating conditions in the end system.

 $¹$ The FUSE_VDD rail is connected to ground. it only needs a voltage if the system fuse burning is needed.</sup>

The method for obtaining the maximum current is as follows:

- 1. Measure the worst case power consumption on individual rails using directed test on i.MX25.
- 2. Correlate the worst case power consumption power measurements with the worst case power consumption simulations.
- 3. Combine common voltage rails based on the power supply sequencing requirements (add the worst case power consumption on each rail within some test cases from several test cases run, to maximize different rails in the power group).
- 4. Guard the worst case numbers for temperature and process variation.
- 5. The sum of individual rails is greater than the real world power consumption, since a real system does not typically maximize the power consumption on all peripherals simultaneously.
- 6. BATT_VDD current is measured when the system is in reduced power mode maintaining the RTC. When the system is in run mode, QVDD is used to supply the DryIce, so this current becomes negligible. See [Table 12,](#page-13-1) for more details on the power modes.

NOTE

The values mentioned above should not be taken as a typical max run data for specific use cases. These values are Absolute MAX data. Freescale recommends that the system current measurements are taken with customer-specific use-cases to reflect normal operating conditions in the end system.

3.4 Thermal Characteristics

The thermal resistance characteristics for the device are given in [Table 16](#page-19-2). These values are measured under the following conditions:

- Two-layer substrate
- Substrate solder mask thickness: 0.025 mm
- Substrate metal thicknesses: 0.016 mm
- Substrate core thickness: 0.200 mm
- Core through I.D: 0.118 mm, Core through plating 0.016 mm.
- Flag: Trace style with ground balls under the die connected to the flag
- Die Attach: 0.033 mm non-conductive die attach, $k = 0.3$ W/m K
- Mold compound: Generic mold compound; $k = 0.9$ W/m K

Table 16. Thermal Resistance Data

¹ Junction-to-ambient thermal resistance determined per JEDC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package.

² Junction-to-board thermal resistance determined per JEDC JESD51-8. Thermal test board meets JEDEC specification for this package.

- ³ Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.
- ⁴ Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, this thermal characterization parameter is written as Psi-JT.

3.5 I/O DC Parameters

This section includes the DC parameters of the following I/O types:

- DDR I/O: Mobile DDR (mDDR), double data rate (DDR2), or synchronous dynamic random access memory (SDRAM)
- General purpose I/O (GPIO)

NOTE

The term 'OVDD' in this section refers to the associated supply rail of an input or output. The association is shown in the "Signal Multiplexing" chapter of the reference manual.

3.5.1 DDR I/O DC Parameters

The DDR pad type is configured by the IOMUXC_SW_PAD_CTL_GRP_DDRTYPE register (see the External Signals and Pin Multiplexing chapter of the *i.MX25 Reference Manual* for details).

3.5.1.1 DDR_TYPE = 00 Standard Setting DDR I/O DC Parameters

Table 17 shows the I/O parameters for mobile DDR. These settings are suitable for mDDR and DDR2 1.8V $(\pm 5\%)$ applications.

DC Electrical Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Units
High-level output voltage	Voh	$I_{OH} = -1mA$ IOH = Specified Drive	$OVDD - 0.08$ $0.8 \times$ OVDD			V
Low-level output voltage	Vol	$I_{OL} = 1mA$ I_{OL} = Specified Drive			0.08 $0.2 \times$ OVDD	V
High-level output current	loh.	Voh = $0.8 \times$ OVDDV Standard Drive High Drive Max. Drive	-3.6 -7.2 -10.8			mA
Low-level output current	lol	$Vol = 0.2 \times OVDDV$ Standard Drive High Drive Max. Drive	3.6 7.2 10.8			mA
High-level DC CMOS input voltage	VIH		$0.7 \times$ OVDD	OVDD	$OVDD+0.3$	V
Low-level DC CMOS input voltage	VIL		-0.3	Ω	$0.3 \times$ OVDD	V
Differential receiver VTH+	$VTH+$				100	mV
Differential receiver VTH-	VTH-		-100			mV
Input current (no pull-up/down)	IIN	$VI = 0$ $VI = OVDD$			110 60	nA
High-impedance I/O supply current	Icc-ovdd	$VI = OVDD$ or 0			990	nA
High-impedance core supply current	Icc-vddi	$VI = VDD$ or 0			1220	nA

Table 17. Mobile DDR I/O DC Electrical Characteristics

3.5.1.2 DDR_TYPE = 01 SDRAM I/O DC Parameters

Table 18 shows the DC I/O parameters for SDRAM.

Table 18. SDRAM DC Electrical Characteristics

3.5.1.3 DDR_TYPE = 10 Max Setting DDR I/O DC Parameters

Table 19 shows the I/O parameters for DDR2 (SSTL_18).

DC Electrical Characteristics		Symbol Test Conditions	Min.	Typ.	Max.	Units
Termination voltage ⁵	Vtt		$\text{OVDD}/2 - 0.04$	OVDD/2	$\text{LOVDD}/2 + 0.04$	
Input current ⁶ (no pull-up/down)	ΙIΝ	$VI = 0$ $VI = OVDD$			110 60	nA
High-impedance I/O supply current ⁶	Icc-ovdd	$VI = OVDD$ or 0			980	nA
High-impedance core supply current ^o	Icc-vddi	$VI = VDD$ or 0			1210	nA

Table 19. DDR2 (SSTL_18) I/O DC Electrical Characteristics (continued)

 1 OVDD = 1.7 V; V_{out} = 1.42 V. (V_{out}-OVDD)/IOH must be less than 21 W for values of V_{out} between OVDD and OVDD-0.28 V. ² OVDD = 1.7 V; V_{out} = 280 mV. V_{out}/IOL must be less than 21 W for values of V_{out} between 0 V and 280 mV. Simulation circuit

for parameters V_{oh} and V_{ol} for I/O cells is below.

 3 Vin(dc) specifies the allowable DC excursion of each differential input.

- ⁴ Vid(dc) specifies the input differential voltage required for switching. The minimum value is equal to Vih(dc) Vil(dc).
- ⁵ Vtt is expected to track OVDD/2.

 6 Minimum condition: BCS model, 1.95 V, and -40 °C. Typical condition: typical model, 1.8 V, and 25 °C. Maximum condition: wcs model, 1.65 V, and 105 °C.

3.5.2 GPIO I/O DC Parameters

Table 20 shows the I/O parameters for GPIO.

Table 20. GPIO DC Electrical Characteristics

DC Electrical Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Units
High-level output voltage ¹	Voh	$loh = -1mA$ Ioh = Specified Drive	$OVDD - 0.15$ $0.8 \times$ OVDD			\vee
Low-level output voltage ¹	Vol	$IoI = 1mA$ Iol=Specified Drive			0.15 $0.2 \times$ OVDD	\vee
High-level output current for slow mode	I loh	Voh= $0.8 \times$ OVDD Standard Drive High Drive Max. Drive	-2.0 -4.0 -8.0			mA
High-level output current for fast mode	loh	Voh= $0.8 \times$ OVDD Standard Drive High Drive Max. Drive	-4.0 -6.0 -8.0			mA
Low-level output current for slow mode	lol	Voh= $0.2 \times$ OVDD Standard Drive High Drive Max. Drive	2.0 4.0 8.0			mA
Low-level output current for fast mode	lol	Voh= $0.2 \times$ OVDD Standard Drive High Drive Max. Drive	4.0 6.0 8.0			mA
High-level DC input voltage	VIH		$0.7 \times$ OVDD		OVDD	V
Low-level DC input voltage	VIL		$-0.3 V$		$0.3 \times$ OVDD	V

¹ Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.

3.6 AC Electrical Characteristics

This section provides the AC parameters for slow and fast I/O.

[Figure 3](#page-24-0) shows the load circuit for output. [Figure 4](#page-24-1) through [Figure 6](#page-24-2) show the output transition time and propagation waveforms.

3.6.1 Slow I/O AC Parameters

Table 21 shows the slow I/O AC parameters.

Table 21. Slow I/O AC Parameters

¹ Maximum condition for tpr, tpo, and tpv: wcs model, 1.1 V, I/O 3.0 V (3.0–3.6 V range) or 1.65 V (1.65–1.95 V range), and 105 °C. Minimum condition for tpr, tpo, and tpv: bcs model, 1.3 V, I/O 3.6 V (3.0–3.6 V range) or 1.95 V (1.65–1.95 V range), and –40 °C. Input transition time from core is 1 ns (20%–80%).

² Minimum condition for tps: wcs model, 1.1 V, I/O 3.0 V (3.0–3.6 V range) or 1.65 V (1.65–1.95 V range), and 105 °C. tps is measured between VIL to VIH for rising edge and between VIH to VIL for falling edge.

 3 Maximum condition for tdit: bcs model, 1.3 V, I/O 3.6 V (3.0-3.6 V range) or 1.95 V (1.65-1.95 V range), and -40 °C.

⁴ Maximum condition for tpi and trfi: wcs model, 1.1 V, I/O 3.0 V (3.0–3.6 V range) or 1.65 V (1.65–1.95 V range), and 105 °C. Minimum condition for tpi and trfi: bcs model, 1.3 V, I/O 3.6 V or 1.95 V (1.65–1.95 V range), and –40 °C. Input transition time from pad is 5 ns (20%–80%).

 5 Hysteresis mode is recommended for input with transition time greater than 25 ns.

3.6.2 Fast I/O AC Parameters

Table 22 shows the fast I/O AC parameters for OVDD = 1.65–1.95 V.

Table 22. Fast I/O AC Parameters for OVDD = 1.65–**1.95 V (continued)**

¹ Maximum condition for tpr, tpo, and tpv: wcs model, 1.1 V, I/O 1.65 V, and 105 °C. Minimum condition for tpr, tpo, and tpv: bcs model, 1.3 V, I/O 1.95 V, and –40 °C. Input transition time from core is 1 ns (20%–80%).

² Minimum condition for tps: wcs model, 1.1 V, I/O 1.65 V and 105 °C. tps is measured between VIL to VIH for rising edge and between VIH to VIL for falling edge.

³ Maximum condition for tdit: bcs model, 1.3 V, I/O 1.95 V and –40 °C.

⁴ Maximum condition for tpi and trfi: wcs model, 1.1 V, I/O 1.65 V and 105 °C. Minimum condition for tpi and trfi: bcs model, 1.3 V, I/O 1.95 V and –40 °C. Input transition time from pad is 5 ns (20%–80%).

 5 Hysteresis mode is recommended for input with transition time greater than 25 ns.

Table 23 shows the fast I/O AC parameters for OVDD = 3.0–3.6 V.

Table 23. Fast I/O AC Parameters for OVDD = 3.0–**3.6 V (continued)**

Table 23. Fast I/O AC Parameters for OVDD = 3.0–**3.6 V (continued)**

¹ Maximum condition for tpr, tpo, and tpv: wcs model, 1.1 V, IO 3.0 V and 105 °C. Minimum condition for tpr, tpo, and tpv: bcs model, 1.3 V, IO 3.6 V and –40 °C. Input transition time from core is 1ns (20%–80%).

 2 Minimum condition for tps: wcs model, 1.1 V, IO 3.0 V and 105 °C. tps is measured between VIL to VIH for rising edge and between VIH to VIL for falling edge.

 3 Maximum condition for tdit: bcs model, 1.3 V, IO 3.6 V and -40 °C.

⁴ Maximum condition for tpi and trfi: wcs model, 1.1 V, IO 3.0 V and 105 °C. Minimum condition for tpi and trfi: bcs model, 1.3 V, IO 3.6 V and –40 °C. Input transition time from pad is 5 ns (20%–80%).

 5 Hysteresis mode is recommended for input with transition time greater than 25 ns.

3.6.3 DDR I/O AC Parameters

The DDR pad type is configured by the IOMUXC_SW_PAD_CTL_GRP_DDRTYPE register (see Chapter 4, "External Signals and Pin Multiplexing," in the *i.MX25 Multimedia Applications Processor Reference Manual*).

3.6.3.1 DDR_TYPE = 00 Standard Setting I/O AC Parameters and Requirements

Table 24 shows AC parameters for mobile DDR I/O. These settings are suitable for mDDR and DDR2 1.8V $(\pm 5\%)$ applications.

Table 24. AC Parameters for Mobile DDR I/O

 $\frac{1}{1}$ Maximum condition for tpr, tpo, tpi, and tpv: wcs model, 1.1 V, I/O 1.65 V, and 105 °C. Minimum condition for tpr, tpo, and tpv: bcs model, 1.3 V, I/O 1.95 V and –40 °C. Input transition time from core is 1 ns (20%–80%).

² Minimum condition for tps: wcs model, 1.1 V, I/O 1.65 V, and 105 °C. tps is measured between VIL to VIH for rising edge and between VIH to VIL for falling edge.

³ Maximum condition for tdit: bcs model, 1.3 V, I/O 1.95 V, and –40 °C.

⁴ Maximum condition for tpi and trfi: wcs model, 1.1 V, I/O 1.65 V and 105 °C. Minimum condition for tpi and trfi: bcs model, 1.3 V, I/O 1.95 V and –40 °C. Input transition time from pad is 5 ns (20%–80%).

Table 25 shows the AC parameters for mobile DDR pbijtov18_33_ddr_clk I/O.

Table 25. AC Parameters for Mobile DDR pbijtov18_33_ddr_clk I/O

Table 25. AC Parameters for Mobile DDR pbijtov18_33_ddr_clk I/O (continued)

¹ Maximum condition for tpr, tpo, tpi, and tpv: wcs model, 1.1 V, I/O 1.65 V, and 105 °C. Minimum condition for tpr, tpo, and tpv: bcs model, 1.3 V, I/O 1.95 V and –40 °C. Input transition time from core is 1 ns (20%–80%).

² Minimum condition for tps: wcs model, 1.1 V, I/O 1.65 V, and 105 °C. tps is measured between VIL to VIH for rising edge and between VIH to VIL for falling edge.

³ Maximum condition for tdit: bcs model, 1.3 V, I/O 1.95 V, and –40 °C.

⁴ Maximum condition for tpi and trfi: wcs model, 1.1 V, I/O 1.65 V and 105 °C. Minimum condition for tpi and trfi: bcs model, 1.3 V, I/O 1.95 V and –40 °C. Input transition time from pad is 5 ns (20%–80%).

[Table 26](#page-34-0) shows the AC requirements for mobile DDR I/O.

3.6.3.2 DDR_TYPE = 01 SDRAM I/O AC Parameters and Requirements

Table 27 shows AC parameters for SDRAM I/O.

Table 27. AC Parameters for SDRAM I/O

 $\frac{1}{1}$ Maximum condition for tpr, tpo, tpi, and tpv: wcs model, 1.1 V, I/O 3.0 V, and 105 °C. Minimum condition for tpr, tpo, and tpv: bcs model, 1.3 V, I/O 3.6 V and –40 °C. Input transition time from core is 1 ns (20%–80%).

² Minimum condition for tps: wcs model, 1.1 V, I/O 3.0 V, and 105 °C. tps is measured between VIL to VIH for rising edge and between VIH to VIL for falling edge.

³ Maximum condition for tdit: bcs model, 1.3 V, I/O 3.6 V, and –40 °C.

⁴ Maximum condition for tpi and trfi: wcs model, 1.1 V, I/O 3.0 V and 105 °C. Minimum condition for tpi and trfi: bcs model, 1.3 V, I/O 3.6 V and –40 °C. Input transition time from pad is 5 ns (20%–80%).

Table 28 shows AC parameters for SDRAM pbijtov18_33_ddr_clk I/O.

Table 28. AC Parameters for SDRAM pbijtov18_33_ddr_clk I/O

Table 28. AC Parameters for SDRAM pbijtov18_33_ddr_clk I/O (continued)

 $\frac{1}{1}$ Maximum condition for tpr, tpo, tpi, and tpv: wcs model, 1.1 V, I/O 3.0 V, and 105 °C. Minimum condition for tpr, tpo, and tpv: bcs model, 1.3 V, I/O 3.6 V and –40 °C. Input transition time from core is 1 ns (20%–80%).

² Minimum condition for tps: wcs model, 1.1 V, I/O 3.0 V, and 105 °C. tps is measured between VIL to VIH for rising edge and between VIH to VIL for falling edge.

³ Maximum condition for tdit: bcs model, 1.3 V, I/O 3.6 V, and –40 °C.

⁴ Maximum condition for tpi and trfi: wcs model, 1.1 V, I/O 3.0 V and 105 °C. Minimum condition for tpi and trfi: bcs model, 1.3 V, I/O 3.6 V and –40 °C. Input transition time from pad is 5 ns (20%–80%).

3.6.3.3 DDR_TYPE = 10 Max Setting I/O AC Parameters and Requirements

Table 29 shows AC parameters for DDR2 I/O.

Table 29. AC Parameters for DDR2 I/O

¹ Maximum condition for tpr, tpo, tpi, and tpv: wcs model, 1.1 V, I/O 1. V, and 105 °C. Minimum condition for tpr, tpo, and tpv: bcs model, 1.3 V, I/O 1.9 V and –40 °C. Input transition time from core is 1 ns (20%–80%).

² Minimum condition for tps: wcs model, 1.1 V, I/O 1.7 V, and 105 °C. tps is measured between VIL to VIH for rising edge and between VIH to VIL for falling edge.

 3 Maximum condition for tdit: bcs model, 1.3 V, I/O 1.9 V, and -40 °C.

 4 Maximum condition for tpi and trfi: wcs model, 1.1 V, I/O 1.7 V and 105 °C. Minimum condition for tpi and trfi: bcs model, 1.3 V, I/O 1.9 V and –40 °C. Input transition time from pad is 5 ns (20%–80%).

Table 30 shows AC parameters for DDR2 pbijtov18_33_ddr_clk I/O.

Table 30. AC Parameters for DDR2 pbijtov18_33_ddr_clk I/O

Parameter	Symbol	Load Condition	Min. Rise/Fall	Typ.	Max. Rise/Fall	Units
Duty cycle	Fduty		40	50	60	$\%$
Clock frequency					133	MHz
Output pad transition times ¹	tpr	25 pF 50 pF	0.53/0.52 1.01/0.98	0.80/0.72 1.49/1.34	1.19/1.04 2.21/1.90	ns
Output pad propagation delay ¹ , 50%-50% input signals and crossing of output signals	tpo	25 pF 50 pF	1.3/1.21 1.59/1.5	1.97/1.84 2.37/2.24	2.91/2.71 3.48/3.28	ns

Table 30. AC Parameters for DDR2 pbijtov18_33_ddr_clk I/O (continued)

¹ Maximum condition for tpr, tpo, tpi, and tpv: wcs model, 1.1 V, I/O 1. V, and 105 °C. Minimum condition for tpr, tpo, and tpv: bcs model, 1.3 V, I/O 1.9 V and –40 °C. Input transition time from core is 1 ns (20%–80%).

² Minimum condition for tps: wcs model, 1.1 V, I/O 1.7 V, and 105 °C. tps is measured between VIL to VIH for rising edge and between VIH to VIL for falling edge.

³ Maximum condition for tdit: bcs model, 1.3 V, I/O 1.9 V, and -40 °C.

⁴ Maximum condition for tpi and trfi: wcs model, 1.1 V, I/O 1.7 V and 105 °C. Minimum condition for tpi and trfi: bcs model, 1.3 V, I/O 1.9 V and –40 °C. Input transition time from pad is 5 ns (20%–80%).

[Table 31](#page-39-0) shows the AC requirements for DDR2 I/O.

 $\frac{1}{1}$ The Jedec SSTL_18 specification (JESD8-15a) for an SSTL interface for class II operation supersedes any specification in this document.

² Vid(ac) specifies the input differential voltage IVtr–Vcpl required for switching, where Vtr is the "true" input signal and Vcp is the "complementary" input signal. The minimum value is equal to Vih(ac)–Vil(ac)

³ The typical value of Vix(ac) is expected to be about $0.5 \times$ OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross.

⁴ The typical value of Vox(ac) is expected to be about $0.5 \times$ OVDD and Vox(ac) is expected to track variation in OVDD. Vox(ac) indicates the voltage at which differential output signal must cross. Cload = 25 pF.

3.7 Module Timing and Electrical Parameters

This section contains the timing and electrical parameters for i.MX25 modules.

3.7.1 1-Wire Timing Parameters

[Figure 7](#page-40-0) shows the reset and presence pulses (RPP) timing for 1-Wire.

Figure 7. 1-Wire RPP Timing Diagram

[Table 32](#page-40-1) lists the RPP timing parameters.

[Figure 8](#page-40-2) shows write 0 sequence timing, and [Table 33](#page-40-3) describes the timing parameters (OW5–OW6) that are shown in the figure.

Figure 8. Write 0 Sequence Timing Diagram

Table 33. WR0 Sequence Timing Parameters

ID	Parameter	Symbol	Min.	Typ.	Max.	Units
OW5	Write 0 Low Time	WR0 low	60	100	120	μs
OW ₆	Transmission Time Slot	^I SLOT	OW5	117	120	μs

[Figure 9](#page-41-0) and [Figure 10](#page-41-1) show write 1 and read sequence timing, respectively. [Table 34](#page-41-2) describes the timing parameters (OW7–OW8) that are shown in the figure.

Figure 9. Write 1 Sequence Timing Diagram

Figure 10. Read Sequence Timing Diagram

ID	Parameter	Symbol	Min.	Typ.	Max.	Units
OW7	Write 1 / read low time	^I LOW1		ა	15	μs
OW8	Transmission time slot	^I SLOT	60	117	120	us
OW9	Release time	^I RELEASE	15		45	μs

Table 34. WR1 /RD Timing Parameters

3.7.2 ATA Timing Parameters

[Table 35](#page-42-0) shows parameters used to specify the ATA timing. These parameters depend on the implementation of the ATA interface on silicon, the bus buffer used, the cable delay and cable skew.

Table 35. Timing Parameters

3.7.2.1 PIO Mode Timing Parameters

[Figure 11](#page-43-0) shows a timing diagram for PIO read mode.

Figure 11. PIO Read Mode Timing

To meet PIO read mode timing requirements, a number of timing parameters must be controlled. [Table 36](#page-43-1) shows timing parameters and their determining relations, and indicates parameters that can be adjusted to meet required conditions.

 $\overline{1}$ See [Figure 11](#page-43-0).

[Figure 12](#page-44-0) gives timing waveforms for PIO write mode.

Figure 12. PIO Write Mode Timing

To meet PIO write mode timing requirements, a number of timing parameters must be controlled. [Table 37](#page-44-1) shows timing parameters and their determining relations, and indicates parameters that can be adjusted to meet required conditions.

ATA Parameter	PIO Write Mode Timing Parameter ¹	Relation	Adjustable Parameter(s)		
t1	t1	t1(min.) = time_1 \times T – (tskew1 + tskew2 + tskew5)	time 1		
t2	t _{2w}	$t2(min.) = time_2w \times T - (tskew1 + tskew2 + tskew5)$	time 2w		
t9	t9	$t9$ (min.) = time $9 \times T$ – (tskew1 + tskew2 + tskew6)	time 9		
tЗ		$t3(min.) = (time_2w - time_0n) \times T - (tskew1 + tskew2 + tskew5)$	if not met, increase time 2w		
t4	t4	$t4$ (min.) = time $4 \times T$ – tskew1	time 4		
tA	tA	$tA = (1.5 + time ax) \times T - (tco + tsui + tcable2 + tcable2 + 2 \times tubi)$	time ax		
t0		$t0$ (min.) = (time_1 + time_2 + time_9) \times T	$time_1$, time $2r$, time 9		
		Avoid bus contention when switching buffer on by making ton long enough			
		Avoid bus contention when switching buffer off by making toff long enough			

Table 37. Timing Parameters for PIO Write Mode

¹ See [Figure 12](#page-44-0).

3.7.2.2 Multiword DMA (MDMA) Mode Timing

[Figure 13](#page-45-0) and [Figure 14](#page-45-1) show the timing for MDMA read and write modes, respectively.

Figure 13. MDMA Read Mode Timing

Figure 14. MDMA Write Mode Timing

To meet timing requirements, a number of timing parameters must be controlled. See [Table 38](#page-46-0) for details on timing parameters for MDMA read and write modes.

 1 See [Figure 13](#page-45-0).

² See [Figure 14](#page-45-1).

³ tk1 in the UDMA figures equals (tk $-2 \times T$).

3.7.2.3 Ultra DMA (UDMA) Mode Timing

UDMA mode timing is more complicated than PIO mode or MDMA mode. In this section, timing diagrams for UDMA in- and out-transfers are provided.

3.7.2.3.1 UDMA In-Transfer Timing

[Figure 15](#page-47-0) shows the timing for UDMA in-transfer start.

Figure 15. Timing for UDMA In-Transfer Start

[Figure 16](#page-47-1) shows the timing for host-terminated UDMA in-transfer.

[Figure 17](#page-48-0) shows timing for device-terminated UDMA in-transfer.

Timing parameters for UDMA in-burst are listed in [Table 39.](#page-48-1)

 1 There is a special timing requirement in the ATA host that requires the internal DIOW to go only high three clocks after the last active edge on the DSTROBE signal. The equation given on this line tries to capture this constraint.

Make t_{on} and t_{off} big enough to avoid bus contention.

3.7.2.4 UDMA Out-Transfer Timing

[Figure 18](#page-49-0) shows the timing for start of UDMA out-transfer.

[Figure 19](#page-49-1) shows timing for host-terminated UDMA out-transfer.

Figure 19. Timing for Host-Terminated UDMA Out-Transfer

Timing parameters for UDMA out-bursts are listed in [Table 40](#page-50-0).

Table 40. Timing Parameters UDMA Out-Bursts

3.7.3 Digital Audio Mux (AUDMUX) Timing

The AUDMUX provides a programmable interconnect logic for voice, audio, and data routing between internal serial interfaces (SSI and SAP) and external serial interfaces (audio and voice codecs). The AC timing of AUDMUX external pins is governed by the SSI modules. For more information, see [Section 3.7.17, "Synchronous Serial Interface \(SSI\) Timing.](#page-103-0)"

3.7.4 CMOS Sensor Interface (CSI) Timing

The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as dumb or smart as follows:

- Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync (HSYNC)) and output-only Bayer and statistics data.
- Smart sensors support CCIR656 video decoder formats and perform additional processing of the image (for example, image compression, image pre-filtering, and various data output formats).

The following subsections describe the CSI timing in gated and ungated clock modes.

3.7.4.1 Gated Clock Mode Timing

[Figure 20](#page-51-0) and [Figure 21](#page-51-1) shows the gated clock mode timings for CSI, and [Table 41](#page-52-0) describes the timing parameters (P1–P7) shown in the figures. A frame starts with a rising/falling edge on VSYNC, then HSYNC is asserted and holds for the entire line. The pixel clock is valid as long as HSYNC is asserted.

Figure 20. CSI Gated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge

Figure 21. CSI Gated Clock Mode—Sensor Data at Rising Edge, Latch Data at Falling Edge

3.7.4.2 Ungated Clock Mode Timing

[Figure 22](#page-52-1) shows the ungated clock mode timings of CSI, and [Table 42](#page-52-2) describes the timing parameters (P1–P6) that are shown in the figure. In ungated mode the VSYNC and PIXCLK signals are used, and the HSYNC signal is ignored.

Figure 22. CSI Ungated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge

Table 42. CSI Ungated Clock Mode Timing Parameters

ID	Parameter	Symbol	Min.	Max.	Units
P ₁	CSI VSYNC to pixel clock time	tVSYNC	67.5		ns
P ₂	CSI DATA setup time	tDsu			ns
P3	ICSI DATA hold time	tDh	1.2		ns
P4	CSI pixel clock high time	tCLKh	10		ns
P ₅	CSI pixel clock low time	tCLKI	10		ns
P ₆	CSI pixel clock frequency	fCLK		$48 \pm 10\%$	MHz

3.7.5 Configurable Serial Peripheral Interface (CSPI) Timing

[Figure 23](#page-53-0) and [Figure 24](#page-53-1) provide CSPI master and slave mode timing diagrams, respectively. [Table 43](#page-54-0) describes the timing parameters $(t1-t14)$ that are shown in the figures. The values shown in timing diagrams were tested using a worst-case core voltage of 1.1 V, slow pad voltage of 2.68 V, and fast pad voltage of 1.65 V.

Figure 23. CSPI Master Mode Timing Diagram

Figure 24. CSPI Slave Mode Timing Diagram

 $\frac{1}{1}$ The output SCLK transition time is tested with 25 pF drive.

 2 T_{sclk} = CSPI clock period

 3 T_{wait} = Wait time, as specified in the sample period control register

 $\frac{4}{T_{\text{per}}}$ = CSPI reference baud rate clock period (PERCLK2)

 $5 T_{\text{ipq}} = \text{CSPI}$ main clock IPG_CLOCK period

3.7.6 External Memory Interface (EMI) Timing

The EMI module includes the enhanced SDRAM/LPDDR memory controller (ESDCTL), NAND Flash controller (NFC), and wireless external interface module (WEIM). The following subsections give timing information for these submodules.

3.7.6.1 ESDCTL Electrical Specifications

3.7.6.1.1 SDRAM Memory Controller

The following diagrams and tables specify the timings related to the SDRAMC module which interfaces SDRAM.

Figure 25. SDRAM Read Cycle Timing Diagram

Table 44. DDR/SDR SDRAM Read Cycle Timing Parameters (continued)

 1 SD1 + SD2 does not exceed 7.5 ns for 133 MHz.

² Timing parameters are relevant only to SDR SDRAM. For the specific DDR SDRAM data related timing parameters, see [Table 48](#page-59-0) and [Table 49](#page-60-0).

Figure 26. SDR SDRAM Write Cycle Timing Diagram

Table 45. SDR SDRAM Write Timing Parameters

1 SD11 and SD12 are determined by SDRAM controller register settings.

Table 46. SDRAM Refresh Timing Parameters

¹ SD10 and SD11 are determined by SDRAM controller register settings.

Figure 28. SDRAM Self-Refresh Cycle Timing Diagram

NOTE

The clock continues to run unless CKE is low. Then the clock is stopped in low state.

Table 47. SDRAM Self-Refresh Cycle Timing Parameters

3.7.6.1.2 Mobile DDR SDRAM–Specific Parameters

The following diagrams and tables specify the timings related to the SDRAMC module which interfaces with the mobile DDR SDRAM.

Figure 29. Mobile DDR SDRAM Write Cycle Timing Diagram

¹ Test condition: Measured using delay line 5 programmed as follows: ESDCDLY5[15:0] = 0x0703.

Figure 30. Mobile DDR SDRAM DQ versus DQS and SDCLK Read Cycle Timing Diagram

Table 49. Mobile DDR SDRAM Read Cycle Timing Parameters

3.7.6.1.3 DDR2 SDRAM–Specific Parameters

The following diagrams and tables specify timing related to the SDRAMC module, which interfaces with DDR2 SDRAM.

Figure 31. DDR2 SDRAM Basic Timing Parameters

[Table 50](#page-61-0) provides values for a command/address slew rate of 1 V/ns and an SDCLK, SDCLK_B differential slew rate of 2 V/ns. For additional values, use [Table 51](#page-62-0), "tlS, tlH Derating Values for DDR2-400, DDR2-533."

Table 50. DDR2 SDRAM Timing Parameter Table (continued)

[Table 50](#page-61-0) shows values for a command/address slew rate of 1 V/ns and an SDCLK, SDCLK_B differential slew rate of 2 V/ns. [Table 51](#page-62-0) shows additional values for DDR2-400 and DDR2-533.

	CK, CK Differential Slew Rate						
Command/ Address Slew Rate (V/Ns)	2.0 V/ns		1.5 V/ns		1.0 V/ns		Units
	Δt IS	∆tlH	Δt IS	∆tlH	Δt IS	∆tlH	
4.0	$+187$	$+94$	$+217$	$+124$	$+247$	$+154$	ps
3.5	$+179$	$+89$	$+209$	$+119$	$+239$	$+149$	ps
3.0	$+167$	$+83$	$+197$	$+113$	$+227$	$+143$	ps
2.5	$+150$	$+75$	$+180$	$+105$	$+210$	$+135$	ps
2.0	$+125$	$+45$	$+155$	$+75$	$+185$	$+105$	ps
1.5	$+83$	$+21$	$+113$	$+51$	$+143$	$+81$	ps
1.0	$\mathbf 0$	$\mathbf 0$	$+30$	$+30$	$+60$	$+60$	ps
0.9	-11	-14	$+19$	$+16$	$+49$	$+46$	ps
0.8	-25	-31	$+5$	-1	$+35$	$+29$	ps
0.7	-43	-54	-13	-24	$+17$	$+6$	ps
0.6	-67	-83	-37	-53	-7	-23	ps
0.5	-110	-125	-80	-95	-50	-65	ps
0.4	-175	-188	-145	-158	-115	-128	ps
0.3	-285	-292	-255	-262	-225	-232	ps
0.25	-350	-375	-320	-345	-290	-315	ps
0.2	-525	-500	-495	-470	-465	-440	ps
0.15	-800	-708	-770	-678	-740	-648	ps
0.1	-1450	-1125	-1420	-1095	-1390	-1065	ps

Table 51. tlS, tlH Derating Values for DDR2-400, DDR2-533

Figure 32. DDR2 SDRAM Write Cycle Timing Diagram

Table 52. DDR2 SDRAM Write Cycle Parameter Table

¹ These values are for a DQ/DM slew rate of 1 V/ns and a DQS slew rate of 1 V/ns. For additional values use [Table 53](#page-63-0), "DtDS1, DtDH1 Derating Values for DDR2-400, DDR2-533."

Table 53. Δ**tDS1,** Δ**tDH1 Derating Values for DDR2-400, DDR2-5331,2,3 (continued)**

¹ All units in 'ps'.

² Test conditions are at capacitance=15pF for DDR PADS. Recommended drive strengths are medium for SDCLK and high for address and controls.

³ SDRAM CLK and DQS related parameters are measured from the 50% point. That is, high is defined as 50% of the signal value, and low is defined as 50% of the signal value. DDR SDRAM CLK parameters are measured at the crossing point of SDCLK and SDCLK (inverted clock).

Figure 33. DDR2 SDRAM DQ vs. DQS and SDCLK READ Cycle Timing Diagram

Table 54. DDR2 SDRAM Read Cycle Parameter Table1,2

 1 Test conditions are at capacitance=15 pF for DDR PADS. Recommended drive strengths are medium for SDCLK and high for address and controls.

- ² SDRAM CLK and DQS-related parameters are measured from the 50% point. That is, high is defined as 50% of the signal value, and low is defined as 50% of the signal value. DDR SDRAM CLK parameters are measured at the crossing point of SDCLK and SDCLK (inverted clock).
- 3 The value was calculated for an SDCLK frequency of 133 MHz, by the formula tQH = tHP tQHS = min. (tCL,tCH) tQHS = $0.45*$ tCK – tQHS = $0.45*$ 7.5 – $0.45 = 2.925$ ns

3.7.6.2 NAND Flash Controller (NFC) Timing

The i.MX25 NFC supports normal timing mode, using two Flash clock cycles for one access of \overline{RE} and WE. AC timings are provided as multiplications of the clock cycle and fixed delay. [Figure 34](#page-65-0) through [Figure 37](#page-66-0) depicts the relative timing between NFC signals at the module level for different operations under normal mode. [Table 55](#page-66-1) describes the timing parameters (NF1–NF17) that are shown in the figures.

i.MX25 Applications Processor for Consumer and Industrial Products, Rev. 10

NFCLE

Table 55. NFC Timing Parameters1 (continued)

¹ The Flash clock maximum frequency is 50 MHz.

NOTE

For timing purposes, transition to signal high is defined as 80% of signal value; while signal low is defined as 20% of signal value.

Timing for HCLK is 133 MHz. The internal NFC clock (Flash clock) is approximately 33 MHz (30 ns). All timings are listed according to this NFC clock frequency (multiples of NFC clock phases), except NF16 and NF17, which are not related to the NFC clock.

3.7.6.3 Wireless External Interface Module (WEIM) Timing

[Figure 38](#page-68-0) depicts the timing of the WEIM module, and [Table 56](#page-68-1) describes the timing parameters (WE1–WE27) shown in the figure.

All WEIM output control signals may be asserted and negated by internal clock relative to BCLK rising edge or falling edge according to corresponding assertion/negation control fields. Address always begins relative to BCLK falling edge, but may be ended on rising or falling edge in muxed mode according to the control register configuration. Output data begins relative to BCLK rising edge except in muxed mode, where rising or falling edge may be used according to the control register configuration. Input data, \overline{ECB} and DTACK are all captured relative to BCLK rising edge.

WEIM Input Timing

Figure 38. WEIM Bus Timing Diagram

Table 56. WEIM Bus Timing Parameters1

Table 56. WEIM Bus Timing Parameters1 (continued)

 1 High is defined as 80% of signal value; low is defined as 20% of signal value.

 2 BCLK parameters are being measured from the 50% point. For example, high is defined as 50% of signal value and low is defined as 50% as signal value.

NOTE

The test condition load capacitance was 25 pF. Recommended drive strength for all controls, address, and BCLK is maximum drive.

Recommended drive strength for all controls, address and BCLK is maximum drive.

[Figure 39](#page-70-0) through [Figure 44](#page-73-0) give examples of basic WEIM accesses to external memory devices with the timing parameters described in [Table 56](#page-68-1) for specific control parameter settings.

Figure 39. Synchronous Memory Timing Diagram for Read Access—WSC=1

WSC=1, EBWA=1, EBWN=1, LBN=1

Figure 41. Synchronous Memory Timing Diagram for Two Non-Sequential Read Accesses— WSC=2, SYNC=1, DOL=0

Figure 42. Synchronous Memory TIming Diagram for Burst Write Access— BCS=1, WSC=4, SYNC=1, DOL=0, PSR=1

Figure 43. Muxed A/D Mode Timing Diagram for Synchronous Write Access— WSC=7, LBA=1, LBN=1, LAH=1

Figure 44. Muxed A/D Mode Timing Diagram for Synchronous Read Access— WSC=7, LBA=1, LBN=1, LAH=1, OEA=7

[Figure 45](#page-73-0) through [Figure 49](#page-75-0), and [Table 57](#page-75-1) help to determine timing parameters relative to chip select (CS) state for asynchronous and DTACK WEIM accesses with corresponding WEIM bit fields and the timing parameters mentioned above.

Figure 45. Asynchronous Memory Read Access

Figure 46. Asynchronous A/D Muxed Read Access (RWSC = 5)

Figure 47. Asynchronous Memory Write Access

Figure 48. Asynchronous A/D Mux Write Access

Table 57. WEIM Asynchronous Timing Parameters Relative to Chip Select Table

Table 57. WEIM Asynchronous Timing Parameters Relative to Chip Select Table (continued)

- ¹ For the value of parameters WE4–WE21, see column BCD = 0 in [Table 56.](#page-68-0)
- $2 \overline{CS}$ Assertion. This bit field determines when the \overline{CS} signal is asserted during read/write cycles.
- $3 \overline{CS}$ Negation. This bit field determines when the \overline{CS} signal is negated during read/write cycles.
- 4 BE Assertion. This bit field determines when the \overline{BE} signal is asserted during read cycles.
- 5 BE Negation. This bit field determines when the \overline{BE} signal is negated during read cycles.
- 6 Output maximum delay from internal driving ADDR/control FFs to chip outputs.
- ⁷ Output maximum delay from $\overline{CS}[x]$ internal driving FFs to $\overline{CS}[x]$ out.
- ⁸ DATA maximum delay from chip input data to its internal FF.
- ⁹ DTACK maximum delay from chip dtack input to its internal FF.

NOTE

All configuration parameters (CSA, CSN, EBWA, EBWN, LBA, LBN, LAH, OEN, OEA, EBRA, and EBRN) are in cycle units.

3.7.7 Enhanced Serial Audio Interface (ESAI) Timing

This section describes general timing requirements for ESAI, as well as the ESAI transmit and receive timing.

[Figure 50](#page-78-0) shows the ESAI transmit timing diagram.

Note: In network mode, output flag transitions can occur at the start of each time slot within the frame. In normal mode, the output flag state is asserted for the entire frame period.

Figure 50. ESAI Transmit Timing

[Figure 51](#page-79-0) shows the ESAI receive timing diagram.

Figure 51. ESAI Receive Timing Diagram

[Figure 52](#page-79-1) shows the ESAI HCKT timing diagram.

Figure 52. ESAI HCKT Timing

[Figure 53](#page-80-0) shows the ESAI HCKR timing diagram.

Figure 53. ESAI HCKR Timing

[Table 60](#page-80-1) describes the general timing requirements for the ESAI module. [Table 58](#page-80-2) and [Table 59](#page-80-3) describe respectively the conditions and signals cited in [Table 60](#page-80-1).

Table 58. ESAI Timing Conditions

Symbol	Significance	Comments
i ck	Internal clock	In the i.MX25, the internal clock frequency is equal to the IP bus frequency (133 MHz)
x ck	External clock	The external clock may be derived from the CRM module or other external clock sources
i ck a	Internal clock, asynchronous mode	In asynchronous mode, SCKT and SCKR are different clocks
i ck s	Internal clock, synchronous mode	In synchronous mode, SCKT and SCKR are the same clock

Table 59. ESAI Signals

Table 60. ESAI General Timing Requirements

Table 60. ESAI General Timing Requirements (continued)

¹ V_{CORE} _{VDD} = 1.00 ± 0.10 V; T_J = –40 °C to 125 °C, C_L = 50 pF

² In the "Characteristics" column, bl = bit length, wl = word length, wr = word length relative

³ In the "Expression" column, $T_c = 7.5$ ns.

 4 For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register.

⁵ The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync signal waveform, but spreads starting from one serial clock before the first bit clock (same as the bit length frame sync signal), until the second-to-last bit-clock of the first word in the frame.

⁶ Periodically sampled and not 100% tested.

3.7.8 Enhanced Secured Digital Host Controller (eSDHCv2) Timing

[Figure 54](#page-83-0) shows eSDHCv2 timing, and [Table 61](#page-83-1) describes the timing parameters (SD1–SD8) used in the figure. The following definitions apply to values and signals described in [Table 61](#page-83-1):

- LS: low-speed mode. Low-speed card can tolerate clocks up to 400 kHz
- FS: full-speed mode. Full-speed MMC card's clock can reach 20 MHz; full speed SD/SDIO card clock can reach 25 MHz
- HS: high-speed mode. High-speed MMC card's clock can reach 52 MHz; SD/SDIO card clock can reach 50 MHz

Figure 54. eSDHCv2 Timing

 1 In low-speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.

 2 In normal-speed mode for SD/SDIO card, clock frequency can be any value between 0 \sim 25 MHz. In high speed mode, clock frequency can be any value between $0 \sim 50$ MHz.

 3 In normal-speed mode for MMC card, clock frequency can be any value between 0 \sim 20 MHz. In high speed mode, clock frequency can be any value between $0 \sim 52$ MHz.

⁴ To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.

3.7.9 Fast Ethernet Controller (FEC) Timing

The FEC is designed to support both 10- and 100-Mbps Ethernet networks compliant with the IEEE 802.3 standard. An external transceiver interface and transceiver function are required to complete the interface to the media. The FEC supports 10/100 Mbps MII (18 pins altogether), 10/100 Mbps RMII (ten pins, including serial management interface) and the 10-Mbps-only 7-Wire interface (which uses seven of the MII pins), for connection to an external Ethernet transceiver. All signals are compatible with transceivers operating at a voltage of 3.3 V.

The following subsections describe the timing for MII and RMII modes.

3.7.9.1 FEC MII Mode Timing

The following subsections describe MII receive, transmit, asynchronous inputs, and serial management signal timings.

3.7.9.1.4 MII Receive Signal Timing (FEC_RXD[3:0], FEC_RX_DV, FEC_RX_ER, and FEC_RX_CLK)

The receiver functions correctly up to an FEC_RX_CLK maximum frequency of 25 MHz $+ 1\%$. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the FEC_RX_CLK frequency.

[Figure 55](#page-84-0) shows MII receive signal timings. [Table 62](#page-84-1) describes the timing parameters (M1–M4) shown in the figure.

Figure 55. MII Receive Signal Timing Diagram

¹ FEC_RX_DV, FEC_RX_CLK, and FEC_RXD0 have the same timing in 10 Mbps 7-wire interface mode.

3.7.9.1.5 MII Transmit Signal Timing (FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER, and FEC TX CLK)

The transmitter functions correctly up to an FEC_TX_CLK maximum frequency of 25 MHz $+$ 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the FEC_TX_CLK frequency.

[Figure 56](#page-85-0) shows MII transmit signal timings. [Table 63](#page-85-1) describes the timing parameters (M5–M8) shown in the figure.

Figure 56. MII Transmit Signal Timing Diagram

Table 63. MII Transmit Signal Timing

1 FEC_TX_EN, FEC_TX_CLK, and FEC_TXD0 have the same timing in 10-Mbps 7-wire interface mode.

3.7.9.1.6 MII Asynchronous Inputs Signal Timing (FEC_CRS and FEC_COL)

[Figure 57](#page-85-2) shows MII asynchronous input timings. [Table 64](#page-86-0) describes the timing parameter (M9) shown in the figure.

Figure 57. MII Async Inputs Timing Diagram

Table 64. MII Asynchronous Inputs Signal Timing

¹ FEC_COL has the same timing in 10-Mbit 7-wire interface mode.

3.7.9.2 MII Serial Management Channel Timing (FEC_MDIO and FEC_MDC)

The MDC frequency is designed to be equal to or less than 2.5 MHz to comply with the IEEE 802.3 standard MII specification. However the FEC can function correctly with a maximum MDC frequency of 15 MHz.

[Figure 58](#page-86-1) shows MII asynchronous input timings. [Table 65](#page-86-2) describes the timing parameters (M10—M15) shown in the figure.

Figure 58. MII Serial Management Channel Timing Diagram

3.7.9.3 RMII Mode Timing

In RMII mode, FEC_TX_CLK is used as the REF_CLK, which is a 50 MHz \pm 50 ppm continuous reference clock. FEC_RX_DV is used as the CRS_DV in RMII. Other signals under RMII mode include FEC_TX_EN, FEC_TXD[1:0], FEC_RXD[1:0] and FEC_RX_ER.

[Figure 59](#page-87-0) shows RMII mode timings. [Table 66](#page-87-1) describes the timing parameters (M16–M21) shown in the figure.

Figure 59. RMII Mode Signal Timing Diagram

Table 66. RMII Signal Timing

ID	Characteristic	Min.	Max.	Unit
M16	REF_CLK(FEC_TX_CLK) pulse width high	35%	65%	REF CLK period
M ₁₇	REF_CLK(FEC_TX_CLK) pulse width low	35%	65%	REF_CLK period
M18	REF_CLK to FEC_TXD[1:0], FEC_TX_EN invalid	3		ns
M ₁₉	REF_CLK to FEC_TXD[1:0], FEC_TX_EN valid		12	ns
M20	FEC_RXD[1:0], CRS_DV(FEC_RX_DV), FEC_RX_ER to REF_CLK setup	2		ns
M21	REF_CLK to FEC_RXD[1:0], FEC_RX_DV, FEC_RX_ER hold	2		ns

3.7.10 Controller Area Network (FlexCAN) Transceiver Parameters and Timing

[Table 67](#page-88-0) and [Table 68](#page-88-1) show voltage requirements for the FlexCAN transceiver Tx and Rx pins.

Parameter	Symbol	Min.	Typ.	Max.	Units
High-level output voltage	Vон			$Vcc1 + 0.3$	
Low-level output voltage	VOL		0.8		
$\mathcal{L}_{\mathcal{L}}$ $\mathcal{L}_{\mathcal{$					

Table 67. Tx Pin Characteristics

 $\text{Vcc} = +3.3 \text{ V} \pm 5\%$

Table 68. Rx Pin Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Units
High-level input voltage	Vıн	$0.8 \times$ Vcc ¹		$\rm Vcc^1$	
Low-level input voltage	Vil		0.4	—	
. - - - - $ \cdot$					

 $Vcc = +3.3 V \pm 5%$

[Figure 60](#page-88-2) through [Figure 63](#page-89-0) show the FlexCAN timing, including timing of the standby and shutdown signals.

Figure 60. FlexCAN Timing Diagram

Because integer multiples are not possible, taking into account the range of frequencies at which the SoC has to operate, DPLLs work in FOL mode only.

3.7.11 Inter IC Communication (I2C) Timing

The $I²C$ communication protocol consists of the following seven elements:

- Start
- Data source/recipient
- Data direction
- Slave acknowledge
- Data
- Data acknowledge
- Stop

[Figure 64](#page-90-0) shows the timing of the I^2C module. [Table 69](#page-90-1) and [Table 70](#page-91-0) describe the I^2C module timing parameters (IC1–IC6) shown in the figure.

Figure 64. I2C Module Timing Diagram

- $¹$ A device must internally provide a hold time of at least 300 ns for I2DAT signal in order to bridge the undefined region of the</sup> falling edge of I2CLK.
- ² The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2CLK signal
- ³ A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7) of 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the I2CLK signal.
- If such a device does stretch the LOW period of the I2CLK signal, it must output the next data bit to the I2DAT line max_rise_time(ID No IC9) + data_setup_time(ID No IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the I2CLK line is released.

 4 C_b = total capacitance of one bus line in pF.

Table 70. I2C Module Timing Parameters: 1.8 V +/– 0.10 V

 1 A device must internally provide a hold time of at least 300 ns for I2DAT signal in order to bridge the undefined region of the falling edge of I2CLK.

² The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2CLK signal

3.7.12 Liquid Crystal Display Controller (LCDC) Timing

[Figure 65](#page-92-0) and [Figure 66](#page-93-0) show LCDC timing in non-TFT and TFT mode respectively, and [Table 71](#page-92-1) and [Table 72](#page-93-1) list the timing parameters used in the associated figures.

Figure 65. LCDC Non-TFT Mode Timing Diagram

 1 T is pixel clock period

Figure 66. LCDC TFT Mode Timing Diagram

Table 72. LCDC TFT Mode Timing Parameters

ID	Description	Min.	Ma	Unit
T1	Pixel clock period	22.5	1000	ns
T ₂	HSYNC width			וד
T3	LD setup time	5		ns
T4	LD hold time	5		ns
T5	Delay from the end of HSYNC to the beginning of the OE pulse	3		TI.
T6	Delay from end of OE to the beginning of the HSYNC pulse			тI

 1 T is pixel clock period

3.7.13 Pulse Width Modulator (PWM) Timing Parameters

[Figure 67](#page-94-0) depicts the timing of the PWM, and [Table 73](#page-94-1) lists the PWM timing characteristics.

The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse width modulator output (PWMO) external pin.

Figure 67. PWM Timing

 $\overline{1}$ CL of PWMO = 30 pF

3.7.14 Subscriber Identity Module (SIM) Timing

Each SIM module interface consists of a total of 12 pins (two separate ports, each containing six signals). Typically a port uses five signals.

The interface is designed to be used with synchronous SIM cards, meaning the SIM module provides the clock used by the SIM card. The clock frequency is typically 372 times the Tx/Rx data rate; however, the SIM module can also work with CLK frequencies of 16 times the Tx/Rx data rate.

There is no timing relationship between the clock and the data. The clock that the SIM module provides to the SIM card is used by the SIM card to recover the clock from the data in the same manner as standard UART data exchanges. All six signals (five for bidirectional Tx/Rx) of the SIM module are asynchronous with each other.

There are no required timing relationships between signals in normal mode. The SIM card is initiated by the interface device; the SIM card responds with Answer to Reset. Although the SIM interface has no defined requirements, the ISO/IEC 7816 defines reset and power-down sequences (for detailed information see ISO/IEC 7816).

Figure 68. SIM Clock Timing Diagram

[Table 74](#page-95-0) defines the general timing requirements for the SIM interface.

¹ 50% duty cycle clock,

² With C = 50 pF

 3 With C = 50 pF

- ⁴ With Cin = 30 pF, Cout = 30 pF,
- 5 With Cin = 30 pF,

3.7.14.1 SIM Reset Sequences

SIM cards may have internal reset, or active low reset. The following subset describes the reset sequences in these two cases.

3.7.14.1.1 SIM Cards with Internal Reset

[Figure 69](#page-96-0) shows the reset sequence for SIM cards with internal reset. The reset sequence comprises the following steps:

- After power-up, the clock signal is enabled on SIM_x CLK_{*y*} (time T0)
- After 200 clock cycles, SIM*x* DATA*y* RX TX must be asserted.
- The card must send a response on SIMx DATAy RX TX acknowledging the reset between 400–40000 clock cycles after T0.

Figure 69. Internal Reset Card Reset Sequence

[Table 75](#page-96-1) defines the general timing requirements for the SIM interface.

Table 75. Timing Specifications, Internal Reset Card Reset Sequence

Ref No.	Min.	Max.	Units
	$\hspace{0.05cm}$	200	clk cycles
	400	40,000	clk cycles

3.7.14.1.2 SIM Cards with Active Low Reset

[Figure 70](#page-97-0) shows the reset sequence for SIM cards with active low reset. The reset sequence comprises the following steps:

- After power-up, the clock signal is enabled on SIM*x*_CLK*y* (time T0)
- After 200 clock cycles, SIM*x*_DATA*y*_RX_TX must be asserted.
- SIM*x*_RST*y* must remain low for at least 40,000 clock cycles after T0 (no response is to be received on RX during those 40,000 clock cycles)
- SIM*x* RST_{*y*} is asserted (at time T1)
- SIM*x*_RST*y* must remain asserted for at least 40,000 clock cycles after T1, and a response must be received on SIM*x*_DATA*y*_RX_TX between 400 and 40,000 clock cycles after T1.

Figure 70. Active-Low-Reset SIM Card Reset Sequence

[Table 76](#page-97-1) defines the general timing requirements for the SIM interface.

3.7.14.2 SIM Power-Down Sequence

[Figure 71](#page-98-0) shows the SIM interface power-down AC timing diagram. [Table 77](#page-98-1) shows the timing requirements for parameters (SI7–SI10) shown in the figure.

The power-down sequence for the SIM interface is as follows:

- SIM*x*_SIMPD*y* port detects the removal of the SIM Card
- SIM*x*_RST*y* is negated
- SIM*x*_CLK*y* is negated
- SIM*x*_DATA*y*_RX_TX is negated
- SIM*x*_SVEN*y* is negated

Each of the above steps requires one CKIL period (usually 32 kHz). Power-down may be initiated by a SIM card removal detection; or it may be launched by the processor.

Figure 71. SmartCard Interface Power Down AC Timing

3.7.15 System JTAG Controller (SJC) Timing

[Figure 72](#page-98-2) through [Figure 75](#page-100-0) show respectively the test clock input, boundary scan, test access port, and TRST timings for the SJC. [Table 78](#page-100-1) describes the SJC timing parameters (SJ1–SJ13) indicated in the figures.

Figure 72. Test Clock Input Timing Diagram

Figure 74. Test Access Port Timing Diagram

Figure 75. TRST Timing Diagram

Table 78. SJC Timing Parameters

ID	Parameter	All Frequencies	Unit	
		Min.	Max.	
SJ ₁	TCK cycle time	100^{1}		ns
SJ ₂	TCK clock pulse width measured at V_M^2	40		ns
SJ3	TCK rise and fall times		3	ns
SJ4	Boundary scan input data set-up time	10		ns
SJ ₅	Boundary scan input data hold time	50		ns
SJ6	TCK low to output data valid		50	ns
SJ7	TCK low to output high impedance		50	ns
SJ8	TMS, TDI data set-up time	10		ns
SJ9	TMS, TDI data hold time	50		ns
SJ10	TCK low to TDO data valid		44	ns
SJ11	TCK low to TDO high impedance		44	ns
SJ12	TRST assert time	100		ns
SJ ₁₃	TRST set-up time to TCK low	40		ns

 1 In cases where SDMA TAP is put in the chain, the maximum TCK frequency is limited by the maximum ratio of 1:8 of SDMA core frequency to TCK. This implies a maximum frequency of 8.25 MHz (or 121.2 ns) for a 66 MHz IPG clock.

 2 V_{M –} mid point voltage

3.7.16 Smart Liquid Crystal Display Controller (SLCDC)

[Figure 76](#page-101-0) and [Figure 77](#page-102-0) show SLCDC timing for serial and parallel transfers respectively. [Table 79](#page-102-1) and [Table 80](#page-103-0) describe the timing parameters shown in the respective figures.

Figure 76. SLCDC Timing Diagram—Serial Transfers to LCD Device

Table 80. SLCDC Parallel Interface Timing Parameters

3.7.17 Synchronous Serial Interface (SSI) Timing

The following subsections describe SSI timing in four cases:

- Transmitter with external clock
- Receiver with external clock
- Transmitter with internal clock
- Receiver with internal clock

3.7.17.1 SSI Transmitter Timing with Internal Clock

[Figure 78](#page-103-1) shows the timing for SSI transmitter with internal clock, and [Table 81](#page-104-0) describes the timing parameters (SS1–SS52).

Note: SRXD Input in Synchronous mode only

Table 81. SSI Transmitter Timing with Internal Clock

Note:

- All timings are on pads when SSI is being used for a data transfer.
- "Tx" and "Rx" refer, respectively, to the transmit and receive sections of the SSI.
- For internal frame sync operation using external clock, the FS timing is the same as that of Tx data (for example, during AC97 mode of operation).

[•] All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.

3.7.17.2 SSI Receiver Timing with Internal Clock

[Figure 79](#page-105-0) shows the timing for the SSI receiver with internal clock. [Table 82](#page-105-1) describes the timing parameters (SS1–SS51) shown in the figure.

Figure 79. SSI Receiver Internal Clock Timing Diagram

Note:

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
- All timings are on pads when SSI is being used for a data transfer.
- "Tx" and "Rx" refer to the transmit and receive sections of the SSI.
- For internal frame sync operation using external clock, the FS timing is the same as that of Tx Data (for example, during AC97 mode of operation).

3.7.17.3 SSI Transmitter Timing with External Clock

[Figure 80](#page-106-0) shows the timing for the SSI transmitter with external clock. [Table 83](#page-107-0) describes the timing parameters (SS22-SS46) shown in the figure.

Figure 80. SSI Transmitter with External Clock Timing Diagram

Table 83. SSI Transmitter Timing with External Clock

Note:

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables figures.
- All timings are on pads when SSI is being used for data transfer.
- "Tx" and "Rx" refer, respectively, to the transmit and receive sections of the SSI.
- For internal frame sync operation using external clock, the FS timing is the same as that of Tx data (for example, during AC97 mode of operation).

3.7.17.4 SSI Receiver Timing with External Clock

[Figure 81](#page-108-0) shows the timing for SSI receiver with external clock. [Table 84](#page-108-1) describes the timing parameters (SS22–SS41) used in the figure.

Figure 81. SSI Receiver with External Clock Timing Diagram

Table 84. SSI Receiver Timing with External Clock

Note:

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
- All timings are on pads when SSI is being used for data transfer.

- "Tx" and "Rx" refer, respectively, to the transmit and receive sections of the SSI.
- For internal frame sync operation using external clock, the FS timing is the same as that of Tx data (for example, during AC97 mode of operation).

3.7.18 Touchscreen ADC Electrical Specifications and Timing

This section describes the electrical specifications, operation modes, and timing of the touchscreen ADC.

3.7.18.1 ADC Electrical Specifications

[Table 85](#page-109-0) shows the electrical specifications for the touchscreen ADC.

Table 85. Touchscreen ADC Electrical Specifications (continued)

¹ This comprises only the required initial dummy conversion cycle. Additional power-up time depends on the enadc, reset and soc signals applied to the touchscreen controller.

² This value only includes the ADC and the driver switches, but it does not take into account the current consumption in the touchscreen plate. For example, if the plate resistance is 100 W, the total current consumption is about 33 mA.

 3 At avdd = 3.3 V, dvdd = 1.2 V, Tjunction = 50 °C, fclk = 1.75 MHz, any process corner, unless otherwise noted.

 4 Value measured with a -0.5 dBFS sinusoidal input signal and computed with the code density test.

3.7.18.2 ADC Timing Diagrams

[Figure 82](#page-111-0) represents the synchronization between the signals *clk*, *soc*, *eoc,* and the output bits in the usage of the internal ADC. After a conversion cycle *eoc* is asserted, a new conversion begins only when the

assertion of *soc* is detected. Thus, if the *soc* signal is continuously asserted, the ADC undergoes successive conversion cycles and achieves the maximum sampling rate. If *soc* is negated, no conversion is initiated.

Figure 82. Start-up Sequence

The output data can be read from *adcout11...adcout0*, and is available *tdata* nanoseconds after the rising edge of *eoc*. The *reset* signal and the digital signals controlling the analog switches (*ypsw, xpsw, ynsw, xnsw*) are totally asynchronous.

The following conditions are necessary to guarantee the correct operation of the ADC:

- The input multiplexer selection (*selin11…selin0*) is stable during both the last clock cycle (14th) and the first clock cycle $(1st)$. The best way to guarantee this is to make the input multiplexer selection during clock cycles 2 to 13.
- The references are stable during clock cycle 1 to 13. The best way to guarantee this is to make the reference multiplexer selection (*selrefp* and *selrefn*) before issuing an *soc* pulse and changing it only after an *eoc* pulse has been acquired, during the last clock cycle (14).

[Figure 83](#page-112-0) shows the timing for ADC normal operation.

When the ADC is used so that the idle clock cycles occur between conversions (due to the negation of *soc*), the *selin* inputs must be stable at least 1 clock cycle before the clock's rising edge where the *soc* signal is latched. Also, *selrefp* and *selrefn* must be stable by the time the *soc* signal is latched. These conditions are met if *enadc=1* and *reset=0* throughout ADC operation, including the idle cycles. If the conditions are not met, or if power is lost during ADC operation, then a new start-up sequence is required for ADC to become operational again.

[Figure 84](#page-113-0) represents the usage of the ADC with idle cycles between conversions. This diagram is valid for any value of *N* equal or greater than 1.

Figure 84. ADC Usage with Idle Cycles Between Conversions

3.7.19 UART Timing

This section describes the timing of the UART module in serial and parallel mode.

3.7.19.1 UART RS-232 Serial Mode Timing

3.7.19.1.1 UART Transmit Timing in RS-232 Serial Mode

[Figure 85](#page-114-0) shows the UART transmit timing in RS-232 serial mode, showing only 8 data bits and 1 stop bit. [Table 86](#page-114-1) describes the timing parameter (UA1) shown in the figure.

Figure 85. UART RS-232 Serial Mode Transmit Timing Diagram

Table 86. UART RS-232 Serial Mode Transmit Timing Parameters

¹ F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.

 2 T_{ref-clk}: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).

3.7.19.1.2 UART Receive Timing in RS-232 Serial Mode

[Figure 86](#page-114-2) shows the UART receive timing in RS-232 serial mode, showing only 8 data bits and 1 stop bit. [Table 87](#page-114-3) describes the timing parameter (UA2) shown in the figure.

Figure 86. UART RS-232 Serial Mode Receive Timing Diagram

Table 87. UART RS-232 Serial Mode Receive Timing Parameters

¹ The UART receiver can tolerate 1/(16 \times F_{baud_rate}) tolerance in each bit. But accumulation tolerance in one frame must not exceed $3/(16 \times F_{\text{baud-rate}})$.

 $2 F_{\text{baud rate}}$: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.

3.7.19.2 UART Infrared (IrDA) Mode Timing

The following subsections describe the UART transmit and receive timing in IrDA mode.

3.7.19.2.3 UART IrDA Mode Transmit Timing

[Figure 87](#page-115-0) depicts the UART transmit timing in IrDA mode, showing only 8 data bits and 1 stop bit. [Table 88](#page-115-1) describes the timing parameters (UA3–UA4) shown in the figure.

Figure 87. UART IrDA Mode Transmit Timing Diagram

Table 88. UART IrDA Mode Transmit Timing Parameters

¹ F_{baud_rate}: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.

² T_{ref_clk}: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).

3.7.19.2.4 UART IrDA Mode Receive Timing

[Figure 88](#page-115-2) shows the UART receive timing for IrDA mode, for a format of 8 data bits and 1 stop bit. [Table 89](#page-115-3) describes the timing parameters (UA5–UA6) shown in the figure.

Figure 88. UART IrDA Mode Receive Timing Diagram

¹ The UART receiver can tolerate 1/(16 \times F_{baud rate}) tolerance in each bit. But accumulation tolerance in one frame must not exceed $3/(16 \times F_{\text{baud-rate}})$.

 $2 F_{\text{baud rate}}$: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.

3.7.20 USBOTG Timing

This section describes timing for the USB OTG port and host ports. Both serial and parallel interfaces are described.

3.7.20.1 USB Serial Interface Timing

The USB serial transceiver is configurable to four modes supporting four different serial interfaces:

- DAT SE0 bidirectional, 3-wire mode
- DAT_SE0 unidirectional, 6-wire mode
- VP_VM bidirectional, 4-wire mode
- VP_VM unidirectional, 6-wire mode

The following subsections describe the timings for these four modes.

3.7.20.1.1 DAT_SE0 Bidirectional Mode Timing

[Table 90](#page-116-0) defines the DAT_SE0 bidirectional mode signals.

Table 90. Signal Definitions—DAT_SE0 Bidirectional Mode

[Figure 89](#page-116-1) shows the USB transmit waveform in DAT_SE0 bidirectional mode diagram.

Figure 89. USB Transmit Waveform in DAT_SE0 Bidirectional Mode

[Figure 90](#page-117-0) shows the USB receive waveform in DAT_SE0 bidirectional mode diagram.

Figure 90. USB Receive Waveform in DAT_SE0 Bidirectional Mode

[Table 91](#page-117-1) shows the OTG port timing specification in DAT_SE0 bidirectional mode.

No.	Parameter	Signal Name	Direction	Min.	Max.	Unit	Conditions/ Reference Signal
US ₁	Tx rise/fall time	USB DAT VP	Out		5.0	ns	50 pF
US ₂	Tx rise/fall time	USB SE0 VM	Out		5.0	ns	50 pF
US ₃	Tx rise/fall time	USB TXOE B	Out		5.0	ns	50 pF
US ₄	Tx duty cycle	USB DAT VP	Out	49.0	51.0	$\%$	
US ₅	Enable Delay	USB DAT VP USB SE0 VM	In		8.0	ns	USB TXOE B
US ₆	Disable Delay	USB DAT VP USB SE0 VM	In.		10.0	ns	USB TXOE B
US7	Rx rise/fall time	USB_DAT_VP	In		3.0	ns	35 pF
US ₈	Rx rise/fall time	USB SE0 VM	In		3.0	ns	35 pF

Table 91. OTG Port Timing Specification in DAT_SE0 Bidirectional Mode

3.7.20.1.2 DAT_SE0 Unidirectional Mode Timing

[Table 92](#page-117-2) defines the DAT_SE0 unidirectional mode signals.

Table 92. Signal Definitions—DAT_SE0 Unidirectional Mode

[Figure 91](#page-118-0) shows the USB transmit waveform in DAT_SE0 unidirectional mode diagram.

[Figure 92](#page-118-1) shows the USB receive waveform in DAT_SE0 unidirectional mode diagram.

Figure 92. USB Receive Waveform in DAT_SE0 Unidirectional Mode

[Table 93](#page-118-2) shows the USB port timing specification in DAT_SE0 unidirectional mode.

3.7.20.1.3 VP_VM Bidirectional Mode Timing

[Table 94](#page-119-0) defines the VP_VM bidirectional mode signals.

Table 94. Signal Definitions—VP_VM Bidirectional Mode

[Figure 93](#page-119-1) shows the USB transmit waveform in VP_VM bidirectional mode diagram.

Figure 93. USB Transmit Waveform in VP_VM Bidirectional Mode

[Figure 94](#page-119-2) shows the USB receive waveform in VP_VM bidirectional mode diagram.

[Table 95](#page-120-0) shows the USB port timing specification in VP_VM bidirectional mode.

Table 95. USB Port Timing Specifications in VP_VM Bidirectional Mode

3.7.20.1.4 VP_VM Unidirectional Mode Timing

[Table 96](#page-120-1) defines the signals for USB in VP_VM unidirectional mode.

Table 96. Signal Definitions for USB VP_VM Unidirectional Mode

[Figure 95](#page-121-0) shows the USB transmit waveform in VP_VM unidirectional mode diagram.

Figure 95. USB Transmit Waveform in VP_VM Unidirectional Mode

[Figure 96](#page-121-1) shows the USB receive waveform in VP_VM unidirectional mode diagram.

Receive

Figure 96. USB Receive Waveform in VP_VM Unidirectional Mode

[Table 97](#page-122-0) shows the timing specifications for USB in VP_VM unidirectional mode.

Table 97. USB Timing Specifications in VP_VM Unidirectional Mode

3.7.20.2 USB Parallel Interface Timing

[Table 98](#page-122-1) defines the USB parallel interface signals.

[Figure 97](#page-123-0) shows the USB parallel mode transmit/receive waveform. [Table 99](#page-123-1) describes the timing parameters (USB15–USB17) shown in the figure.

Figure 97. USB Parallel Mode Transmit/Receive Waveform

Table 99. USB Timing Specification in Parallel Mode

4 Package Information and Contact Assignment

4.1 400 MAPBGA—Case 17x17 mm, 0.8 mm Pitch

[Figure 98](#page-124-0) shows the 17×17 mm i.MX25 production package. The following notes apply to [Figure 98](#page-124-0):

- All dimensions in millimeters.
- Dimensioning and tolerancing per ASME Y14.5M-1994.
- Maximum solder bump diameter measured parallel to datum A.
- Datum A, the seating plane, is determined by the spherical crowns of the solder bumps.
- Parallelism measurement shall exclude any effect of mark on top surface of package.

Figure 98. **17×17 i.MX25 Production Package**

4.2 Ground, Power, Sense, and Reference Contact Assignments Case 17x17 mm, 0.8 mm Pitch

[Table 100](#page-124-1) shows the 17×17 mm package ground, power, sense, and reference contact assignments.

Table 100. 17×**17 mm Package Ground, Power Sense, and Reference Contact Assignments**

Table 100. 17×**17 mm Package Ground, Power Sense, and Reference Contact Assignments (continued)**

 $\frac{1}{1}$ NVCC_DRYICE is a supply output. An external capacitor no less than 4 μ F must be connected to it. A 4.7 μ F capacitor is recommended.

4.3 Signal Contact Assignments—17 x 17 mm, 0.8 mm Pitch

[Table 101](#page-126-0) lists the 17×17 mm package i.MX25 signal contact assignments.

Table 101. 17×17 mm Package i.MX25 Signal Contact Assignment

¹ The state immediately after reset and before ROM firmware or software has executed.

² During power-on reset this port acts as input for fuse override signal.

³ During power-on reset this port acts as output for diagnostic signal.

[Table 102](#page-133-0) lists the 17×17 mm package i.MX25 no connect contact assignments.

Table 102. 17×**17 mm Package i.MX25 No Connect Contact Assignments**

4.4 i.MX25 17x17 Package Ball Map

[Table 103](#page-134-0) shows the i.MX25 17×17 package ball map.

Table 103. i.MX25 17×**17 Package Ball Map**

		$\mathbf{\Omega}$	ω	4	5	ဖ	Z	ထ	თ	\overline{P}	Ξ	\mathbf{r}	$\frac{1}{2}$	$\frac{4}{5}$	15	$\frac{6}{1}$	17	$\frac{8}{1}$	01	<u>ន</u>
\blacktriangleleft	QGND	A10	A14	A19	A22	A23	A25	SD ₁₅	SD ₁₃	SD7	QGND	SD ₀	SD5	SDCLK_B	SDWE	SDBA1	CS3	λ	45	QGND
\mathbf{m}	ВJ	ECB	EB0	A15	A17	A20	A24	SDQS1	SD ₈	SD ₁₀	QGND	SDQS0	SD ₂	SDCLK	SDBA0	C _S 2	\overline{z}	2	ZY	NC_BGA_B20
\circ	⋒ NFRE	NFRB	C _S	RM	EB ₁	A16	A21	DQM1	SD ₁₂	SD ₁₁	QGND	DOMO	SD ₁	RAS	SDCKE1	CAS	SZ	QV	٩6	\overline{A}
Ω	6g	NF_CEO	\overline{c}	CS5	CS4	₩ _O	A18	BCLK	SD ₁₄	SD ₉	QGND	SD ₆	SD4	SD ₃	SDCKEO	MA10	A12	A^{B}	A13	A11
Ш	2g	\overline{a}	δ0	NFCLE	QGND	QGND	QGND	QGND	QGND	QGND	QGND	QGND	QGND	QGND	QGND	QGND	2C1_CLK NC_BGA_E17	CSI_D7	CSL_D3	CSI_D6
Щ	$\overline{5}$	$\overline{D}10$	\overline{D}	NFALE	QGND	QGND	QGND	QGND	QGND	QGND	QGND	QGND	QGND	QGND	QGND	QGND		CSI_D ₂	CS _{D4}	CSI_D9
U	δ	Σđ	D3	NFWE_B	QGND	NVCC_EMI1	NVCC_EMI1	NVCC_EMI1	NVCC_EMI1	QGND	QVDD	NVCC_EMI2	NVCC_EMI2	NVCC_EMI2	NVCC_EMI2	QGND	12C1_DAT	CSI _{_D5}	CSI_D8	CSI_VSYNC
H	8G	D ₁₃	$\frac{2}{2}$	NFWP_B	QGND	NVCC_EMI1	NVCC_EMI1	NVCC_EMI1	QGND	QGND	QGND	NVCC_EMI2	NVCC_EMI2	NVCC_EMI2	QGND	QGND	NC_BGA_H17	CSI_MCLK	CSI_HSYNC	CSI_PIXCLK
っ	D14	D ₁₅	5G	FEC_TDATA1	QGND	NVCC_EMI1	NVCC_EMI1	aand	QGND	QGND	QGND	QVDD	NVCC_CSI	NVCC_CSI	QGND	QGND	BIAS USBPHY1_VSSA_	USBPHY1_UID	NC_BGA_J19	SD1_DATA3

Table 103. i.MX25 17×**17 Package Ball Map (continued)**

	↽	\sim	ო	$\ddot{}$	LO	ဖ	Ľ	∞	თ	$\overline{1}$	H	51	$\frac{1}{2}$	\ddot{a}	15	$\frac{6}{1}$	$\ddot{ }$	$\frac{8}{1}$	$\frac{6}{1}$	\boldsymbol{S}
っ	TXD UART1	UART1_RXD	SCLK CSPI1	CONTRAST	LSCLK	VSYNC	HSYNC	D3	SJC_MOD	NVCC_JTAG	INAUX0	INAUX2	$\widetilde{\mathsf{x}}$	WIPER	NC_BGA_U15	NC_BGA_U16	MPLL _GND	QQV MPLL ₋	\mathbf{m} POR _.	UPLL_BYPCLK
>	CSPI1_RDY	CSPI1_SS1	ACD \overline{a}	LD14	LD ₁₂	$\overline{D8}$	BG	\overline{a}	TRSTB	TCK	HE H	INAUX1	웃	\approx	NC_BGA_V15	NC_BGA_V16	NC_BGA_V17	TEST_MODE	BOOT_MODE0	CLKO
₹	CSPI1_MISO	PWM	LD15	LDT3	00	D6	\overline{D}	≃ ۳	\overline{P}	RTCK	NVCC_DRYICE	ξ	NVCC_ADC	BGA_W14 \overline{Q}^{\dagger}	OSC24M_GND	OSC24M_VDD	USBPHY2_VSS	JOD USBPHY2	CLK_SEL	BOOT_MODE1
≻	QGND	NC_BGA_Y2	LDT1	D10	ζq	$\overline{D4}$	$\overline{5}$	DO	TMS	OSC32K_XTAL	OSC32K_EXTAL	OSC_BYP	ADC NGND	NC_BGA_Y14	DSC24M_EXTAL	OSC24M_XTAL	NC_BGA_Y17	USBPHY2_DP	USBPHY2_DM	QGND

Table 103. i.MX25 17×**17 Package Ball Map (continued)**

4.5 347 MAPBGA—Case 12 x 12 mm, 0.5 mm Pitch

Figure 99 shows the 12×12 mm i.MX25 production package. The following notes apply to Figure 99:

- All dimensions in millimeters.Dimensioning and tolerancing per ASME Y14.5M-1994.
- Maximum solder ball diameter measured parallel to datum A.
- Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
- Parallelism measurement shall exclude any effect of mark on package's top surface.

Figure 99. 12×**12 mm i.MX25 Production Package**

4.6 Ground, Power, Sense, and Reference Contact Assignments Case 12x12 mm, 0.5 mm Pitch

Table 104 shows the 12×12 mm package ground, power, sense, and reference contact assignment.

Table 104. 12x12 mm Package Ground, Power Sense, and Reference Contact Assignments

Table 104. 12x12 mm Package Ground, Power Sense, and Reference Contact Assignments (continued)

¹ NVCC_DRYICE is a supply output. An external capacitor no less than 4 μ F must be connected to it. A 4.7 μ F capacitor is recommended.

4.7 Signal Contact Assignments—12 x 12 mm, 0.5 mm Pitch

Table 105 lists the 12×12 mm package i.MX25 signal contact assignments.

Table 105. 12x12 mm Package i.MX25 Signal Contact Assignment (continued)

Table 105. 12x12 mm Package i.MX25 Signal Contact Assignment (continued)

Table 105. 12x12 mm Package i.MX25 Signal Contact Assignment (continued)

¹ The state immediately after reset and before ROM firmware or software has executed.

² During power-on reset this port acts as input for fuse override signal.

³ During power-on reset this port acts as output for diagnostic signal.

Table 106 lists the 12×12 mm package i.MX25 no connect contact assignments.

Table 106. 12×**12 mm Package i.MX25 No Connect Contact Assignments**

4.8 i.MX25 12x12 Package Ball Map

Table 107 shows the i.MX25 12×12 package ball map.

Table 107. i.MX25 12×**12 Package Ball Map**

	$\overline{}$	Z	ω	4	5	ဖ	Z	ထ	თ		$\overline{+}$	$\frac{1}{2}$	13	$\frac{1}{4}$			17	$\frac{8}{10}$	$\frac{6}{1}$	\mathbf{S}	$\overline{2}$	
්	ΣS	8		NFWP_B	NFRB	QGND	avpp				QGND	QGND	QVDD	QGND					CSID ₅		CSI_VSYNC	CSI_HSYNC 22
H	D3	\overline{a}		D10	ρg		QVDD	NVCC_EMI1 NVCC_EMI1	NVCC_EMI1 NVCC_EMI1	NVC_EMIT_LINIT_OO	QGND	QGND	avpp	QGND	NVCC_EMI2 NVCC_EMI2 15	NVC ₋ EMI2 NVC-EMI2 16		avpp	CSID ₉		12C1_DAT	I2C1_CLK
っ	B5	D ₁₃		$\frac{2}{2}$			NVCC_NFC	NVCC_NFC			QGND	QGND			NVCC_CSI	NVCC_CSI		avpp	CSI_PIXCLK		USBPHY1_DM	USBPHY1_UID
×	8Q	D ₁₅		D14	$\overline{5}$		NACC_NEC	NVCC_NFC		QGND	QGND	QGND	QGND		USBPHY1_VDDA	USBPHY1_VDDA		USBPHY1_VSSA_BIAS	USBPHY1_VSSA		USBPHY1_DP	USBPHY1_VBUS
┙	5G	FEC_TDATA0		NC_BGA_L4	FEC_RX_DV		QGND	QGND	QGND	QGND	QGND	QGND	QGND	QGND	QGND	QGND			USBPHY1_RREF		USBPHY1_UPLLVDD	USBPHY1_VDDA_BIAS
Σ	TDATA1 FEC	FEC_MDIO		RDATAO FEC			QGND	QGND	QGND	QGND	QGND	QGND	QGND	QGND	QGND	QGND		L_VDD 립	UPLLVSS VHABSP		DATA ₃ GS	$_$ DATA2 SD ₁
z	FEC_TX_CLK	FEC_RDATA1		KPP_COL3	KPP_COL1		avpp	avpp		QGND	QGND	QGND	QGND		NGND_ADC	UPLL_GND			NVCC_SDIO		SD1_CLK	SD1_CMD
Δ.	FEC_MDC	KPP_COL2		KPP_ROW3	UART2_CTS		NVCC_MISC	NVCC_MISC			QGND	QGND			NVCC_ADC	NVCC_CRM		FUSE_VDD	GPIO_D		$GPO-B$	SD1_DATA0

Table 107. i.MX25 12×**12 Package Ball Map (continued)**

Table 107. i.MX25 12×**12 Package Ball Map (continued)**

5 Revision History

Table 108 summarizes revisions to this document.

Table 108. Revision History (continued)

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and the Energy Efficient Solutions logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM is the registered trademark of ARM Limited. ARM 926EJ-S is the trademark of ARM Limited. © 2009-2013 Freescale Semiconductor, Inc.

Document Number: IMX25CEC Rev. 10 07/2013

ООО "ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 30101810900000000703 БИК 044030703

 Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

 Мы предлагаем:

- *Конкурентоспособные цены и скидки постоянным клиентам.*
- *Специальные условия для постоянных клиентов.*
- *Подбор аналогов.*
- *Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.*
- *Приемлемые сроки поставки, возможна ускоренная поставка.*
- *Доставку товара в любую точку России и стран СНГ.*
- *Комплексную поставку.*
- *Работу по проектам и поставку образцов.*
- *Формирование склада под заказчика.*
- *Сертификаты соответствия на поставляемую продукцию (по желанию клиента).*
- *Тестирование поставляемой продукции.*
- *Поставку компонентов, требующих военную и космическую приемку.*
- *Входной контроль качества.*
- *Наличие сертификата ISO.*

 В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- *Регистрацию проекта у производителя компонентов.*
- *Техническую поддержку проекта.*
- *Защиту от снятия компонента с производства.*
- *Оценку стоимости проекта по компонентам.*
- *Изготовление тестовой платы монтаж и пусконаладочные работы.*

 Tел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www[.lifeelectronics.ru](http://lifeelectronics.ru/)