

Data sheet

SAW RF uplink filter
Base stations
LTE band 13 extend

Series/type: B5114

Ordering code: B39781B5114U410

Date: May 08, 2019

Version: 2.5

RF360 products mentioned within this document are products of RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

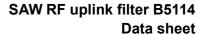
RF360 Europe GmbH
A Qualcomm – TDK Joint Venture

Data sheet

SAW RF uplink filter
Base stations
LTE band 13 extend

Series/type: B5114

Ordering code: B39781B5114U410


Date: May 08, 2019

Version: 2.5

RF360 products mentioned within this document are products of RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

RF360 Holdings Singapore Pte. Ltd. is a joint venture of Qualcomm Global Trading Pte. Ltd. and EPCOS AG.

RF360 Europe GmbH, Anzinger Str. 13, München, Germany

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

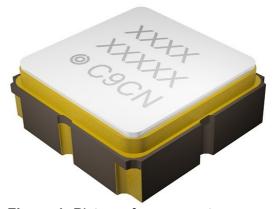
Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

RF360 Europe GmbH A Qualcomm – TDK Joint Venture

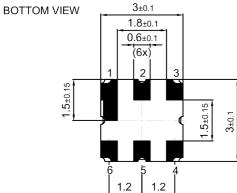
Table of contents

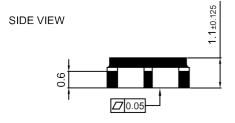
1 Application	
2 Features	_
3 Package	5
4 Pin configuration	5
5 Matching circuit	
6 Characteristics	
7 Maximum ratings	
8 Transmission coefficient	10
9 Reflection coefficients	11
10 Packing material	12
11 Marking	
12 Soldering profile.	16
13 Annotations.	
14 <u>Cautions and warnings</u>	
15 Important notes.	

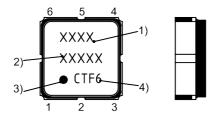

RF360 Europe GmbH A Qualcomm – TDK Joint Venture

1 Application

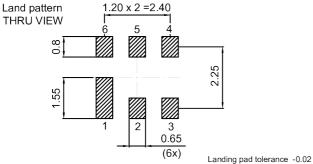
- RF filter for base station
- Unbalanced to unbalanced operation
- Low amplitude ripple
- Usable pass band 11 MHz


2 Features


- Package code DCC6C
- Package size 3.0±0.1 mm × 3.0±0.1 mm
- Package height 1.1±0.125 mm
- Approximate weight 0.04 g
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Lead free soldering compatible with J-STD20C
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 1 (MSL1)


Figure 1: Picture of component with example of product marking.

3 Package



TOP VIEW SIDE VIEW

- 1)Device designation
- 2)Last five digits of the lot number
- 3)Marking for pad number 1
- 4)Example of production location and date code

Figure 2: Drawing of package. See Sec. Package information (p. 18).

■ 1, 3, 4, 6 Ground

Pin configuration

5 Matching circuit

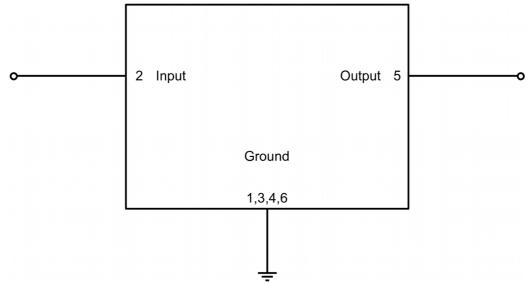


Figure 3: Schematic of matching circuit. No external matching components required.

6 Characteristics

Temperature range for specification $T_{\text{SPEC}} = -40 \,^{\circ}\text{C} \dots +85 \,^{\circ}\text{C}$

Input terminating impedance $Z_{_{\rm IN}} = 50~\Omega$ Output terminating impedance $Z_{_{\rm OUT}} = 50~\Omega$

Characteristics				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
Center frequency			f _C	_	781.5	_	MHz
Maximum insertion attenuation			$\boldsymbol{\alpha}_{\text{max}}$				
	776 787	MHz		_	1.6	2.5	dB
Amplitude ripple (p-p)			Δα				
	776 787	MHz		_	0.6	1.5	dB
Amplitude ripple (in any segment of 5MHz)			Δα				
	776 787	MHz		_	0.5	0.6	dB
Average group delay			$\boldsymbol{\tau}_{avg}$				
	776 787	MHz		_	35	70	ns
Group delay ripple			Δau_{var}				
	776 787	MHz		_	48	70	ns
Maximum VSWR			VSWR _{max}				
@ input port	776 787	MHz		_	1.3	1.9	
@ output port	776 787	MHz		_	1.3	1.9	
Minimum attenuation			$\boldsymbol{\alpha}_{\text{min}}$				
	54 700	MHz		35	40	_	dB
	700 746	MHz		20	30	_	dB
	746 757	MHz		20	28	_	dB
	758 765	MHz		9	23	_	dB
	851 894	MHz		30	44	_	dB
	894 1250	MHz		28	35	_	dB
	1250 2050	MHz		35	50	_	dB
	2050 3800	MHz		10	13	_	dB

Temperature range for specification

Input terminating impedance
Output terminating impedance

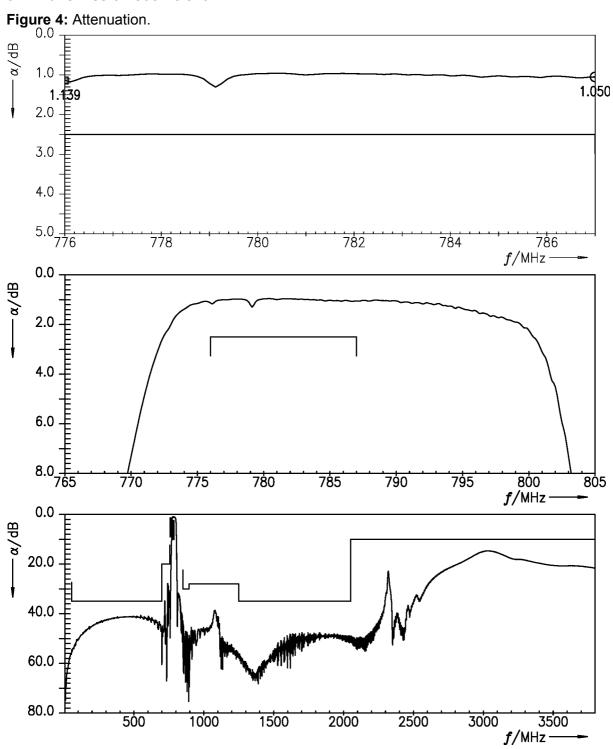
 T_{SPEC} = -40 °C ... +105 °C

 $Z_{\text{IN}} = 50 \ \Omega$ $Z_{\text{OUT}} = 50 \ \Omega$

Characteristics				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
Center frequency			f _C	_	781.5	_	MHz
Maximum insertion attenuation			α_{max}				
	776 787	MHz		_	1.6	2.6	dB
Amplitude ripple (p-p)			Δα				
	776 787	MHz		_	0.6	1.6	dB
Amplitude ripple (in any segment of 5MHz)			Δα				
	776 787	MHz		_	0.5	0.6	dB
Average group delay			$\boldsymbol{\tau}_{\text{avg}}$				
	776 787	MHz		_	35	80	ns
Group delay ripple			$\Delta \tau_{\text{var}}$				
	776 787	MHz		_	48	80	ns
Maximum VSWR			$VSWR_{max}$				
@ input port	776 787	MHz		_	1.3	1.9	
@ output port	776 787	MHz		_	1.3	1.9	
Minimum attenuation			$\boldsymbol{\alpha}_{\text{min}}$				
	54 700	MHz		35	40	_	dB
	700 746	MHz		20	30	_	dB
	746 757	MHz		20	28	_	dB
	758 765	MHz		5	23	_	dB
	851 894	MHz		30	44	_	dB
	894 1250	MHz		28	35	_	dB
	1250 2050	MHz		35	50	_	dB
	2050 3800	MHz		10	13	_	dB

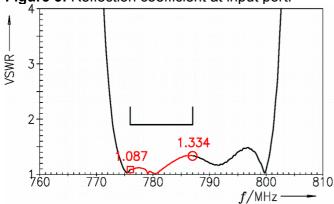
7 Maximum ratings

Operable temperature	T _{OP} = -45 °C +125 °C	
Storage temperature	T _{STG} ¹⁾ = -45 °C +125 °C	
ESD voltage		
	$V_{\rm ESD}^{3)} = 100 \text{ V}$	Machine model.
	V _{ESD} ⁴⁾ = 275 V	Human body model.
Input power @ input port: 776 787 MHz	P _{IN} = 15 dBm	Continuous wave for 5000 h @ 100 °C.


Not valid for packaging material. Please refer to definition of Shelf life (p. 17).

²⁾ In case of applied DC voltage blocking capacitors are mandatory.

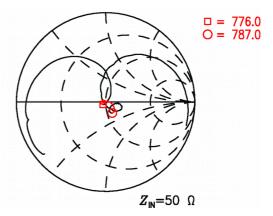
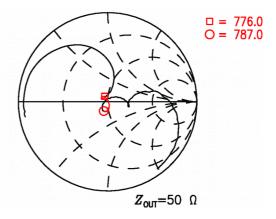
³⁾ According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses.

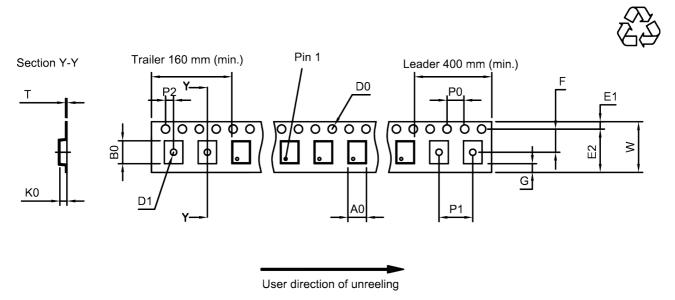

⁴⁾ According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse.

8 Transmission coefficient

9 Reflection coefficients

Figure 5: Reflection coefficient at input port.


Figure 6: Reflection coefficient at output port.

10 Packing material

10.1 Tape

Figure 7: Drawing of tape (first-angle projection) for illustration only and not to scale. The valid tape dimensions are listed in Table 1.

A ₀	3.25 _{±0.1} mm	E ₂	10.25 mm (min.)	P ₁	4.0±0.1 mm
B ₀	3.3±0.1 mm	F	5.5±0.05 mm	P ₂	2.0±0.1 mm
D ₀	1.5+0.1/-0 mm	G	0.75 mm (min.)	Т	0.3±0.05 mm
D_1	1.5 mm (min.)	K ₀	1.5±0.1 mm	W	12.0+0.3/-0.1 mm
E ₁	1.75 _{±0.1} mm	P ₀	4.0 _{±0.1} mm		

Table 1: Tape dimensions.

10.2 Reel with diameter of 180 mm

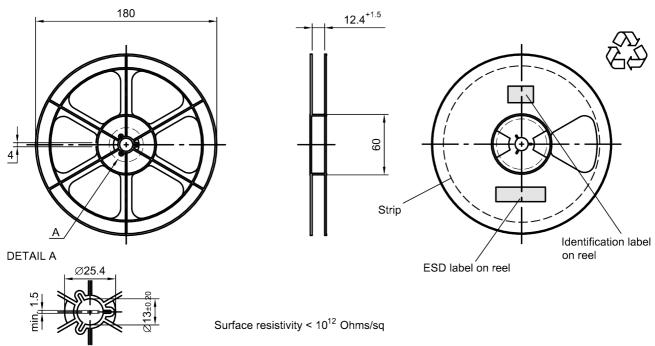


Figure 8: Drawing of reel (first-angle projection) with diameter of 180 mm.

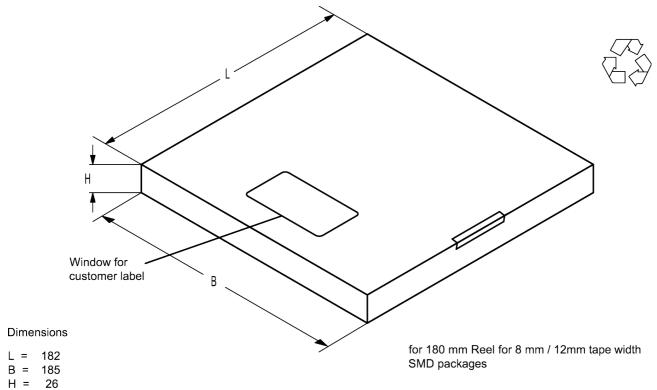


Figure 9: Drawing of folding box for reel with diameter of 180 mm.

10.3 Reel with diameter of 330 mm

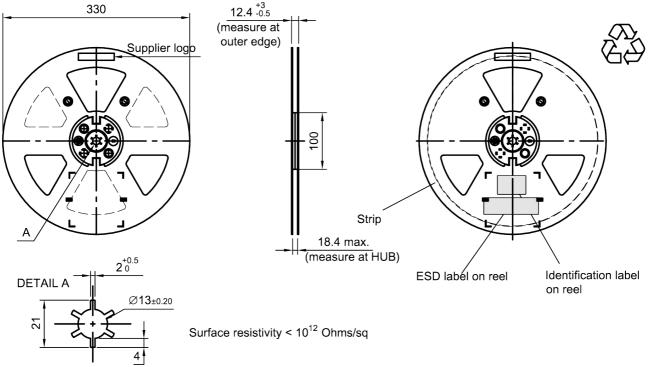


Figure 10: Drawing of reel (first-angle projection) with diameter of 330 mm.

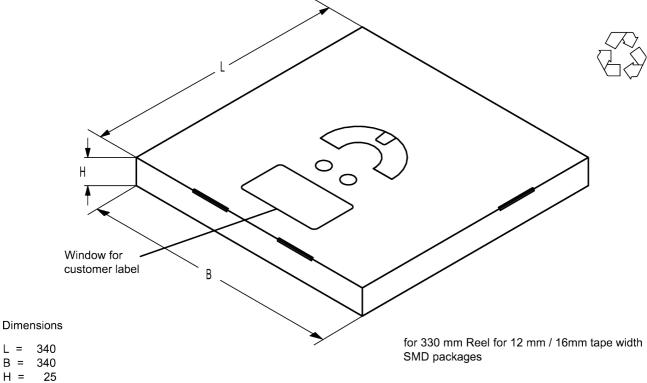


Figure 11: Drawing of folding box for reel with diameter of 330 mm.

11 Marking

Products are marked with device designation, lot number, as well as production location and date code.

■ Device designation: The 4-character device designation of the ordering code is used for the marking.

Example for 4-character device designation: B3xxxxB1234xxxx

■ Lot number: The last 5 digits of the lot number are used for the marking.

Example: <u>12345</u>

■ Production location and date code: The production location is Wuxi (encoded in the first character 'C'). The production date code is encoded in the last three characters according to Table 2.

1 st digit (day)					2 nd digit (year)			3 rd digit (month)					
Day	Code	Day	Code	Day	Code	Year	Code	Year	Code	Month	Code	Month	Code
1	1	11	Α	21	М	2010	Α	2022	Р	Jan	1	Jul	7
2	2	12	В	22	N	2011	В	2023	R	Feb	2	Aug	8
3	3	13	С	23	Р	2012	С	2024	S	Mar	3	Sep	9
4	4	14	D	24	R	2013	D	2025	Т	Apr	4	Oct	0
5	5	15	E	25	S	2014	Е	2026	U	May	5	Nov	N
6	6	16	F	26	Т	2015	F	2027	V	Jun	6	Dec	D
7	7	17	Н	27	U	2016	Н	2028	W				
8	8	18	J	28	V	2017	J	2029	Х				
9	9	19	K	29	W	2018	K	2030	Z				
10	0	20	L	30	Х	2019	L	2031	Α				
				31	Z	2020	М	2032	В				
						2021	N	and	so on				

Table 2: Production date code.

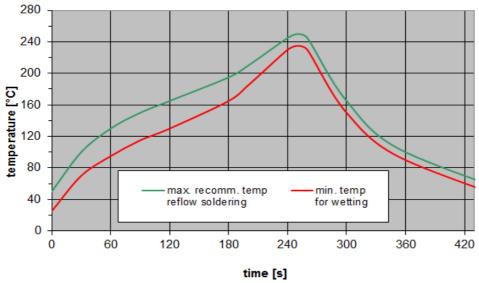
Example of how to decode production location and date code:

Code: C T F 6

Location: C \rightarrow Wuxi

Day: T \rightarrow 26th

Year: F \rightarrow 2015


Month: 6 \rightarrow June

12 Soldering profile

The recommended soldering process is in accordance with IEC $60068-2-58-3^{rd}$ edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
T > 220 °C	30 s to 70 s
T > 230 °C	min. 10 s
T > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	-
peak temperature T_{peak}	250 °C +0/-5 °C
wetting temperature T_{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature <i>T</i>	measured at solder pads

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 12: Recommended reflow profile for convection and infrared soldering – lead-free solder.

13 Annotations

13.1 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

13.2 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local RF360 sales office.

13.3 Shelf life

The shelf life of components is determined by solderability of the package terminals. It is specified as 2 years from manufacturing date assuming the following conditions:

- storage in original packaging and non-aggressive atmosphere,
- storage temperature ranging from -25 °C to +40 °C, and
- storage humidity with ≤ 75 % r.h. mean annual humidity, ≤ 95 % r.h. for max. 30 days / year, and no dew condensation.

14 Cautions and warnings

14.1 Display of ordering codes for RF360 products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of RF360, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.rf360jv.com/orderingcodes.

14.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

For information on recycling of tapes and reels please contact one of our sales offices.

14.3 Moldability

Before using in overmolding environment, please contact your local RF360 sales office.

14.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on RF360 internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of RF360, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Projection method

Unless otherwise specified first-angle projection is applied.

15 Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, RF360 Europe GmbH and its affiliates are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an RF360 product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.rf360jv.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qualcomm RF360: B39781B5114U410

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru