

DS1302 Trickle Charge Timekeeping Chip

DS1302

FEATURES

- Real time clock counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap year compensation valid up to 2100
- 31 x 8 RAM for scratchpad data storage
- Serial I/O for minimum pin count
- 2.0-5.5 volt full operation
- Uses less than 300 nA at 2.0 volts
- Single-byte or multiple-byte (burst mode) data transfer for read or write of clock or RAM data
- 8-pin DIP or optional 8-pin SOIC's for surface mount
- Simple 3-wire interface
- TTL-compatible (V_{CC} = 5V)
- Optional industrial temperature range –40°C to +85°C
- DS1202 compatible
- Added features over DS1202
 - Optional trickle charge capability to V_{CC1}
 - Dual power supply pins for primary and backup power supplies
 - Backup power supply pin can be used for battery or super cap input
 - Additional scratchpad memory (7 bytes)

DESCRIPTION

The DS1302 Trickle Charge Timekeeping Chip contains a real time clock/calendar and 31 bytes of static RAM. It communicates with a microprocessor via a simple serial interface. The real time clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The end of the month date is automatically adjusted for months with less than 31 days, including corrections for leap year. The clock operates in either the 24–hour or 12–hour format with an AM/PM indicator.

PIN ASSIGNMENT

V _{CC2} 1	8 V _{CC1}
X1 2	7 SCLK
X2 3	6 I/O
GND 4	5 RST
DS13	02
8–PIN DIP (300 MIL)
V _{CC2} 1	8 U _{CC1}
X1 2	7 SCLK
X2 3	6 III <u>//O</u>
GND 4	5 III RST
DS1302S 8–PIN S	OIC (200 MIL)
DS1302Z 8–PIN S	OIC (150 MIL)

PIN DESCRIPTION

X1, X2	_	32.768 kHz Crystal Pins
GND	-	Ground
RST	-	Reset
I/O	_	Data Input/Output
SCLK	_	Serial Clock

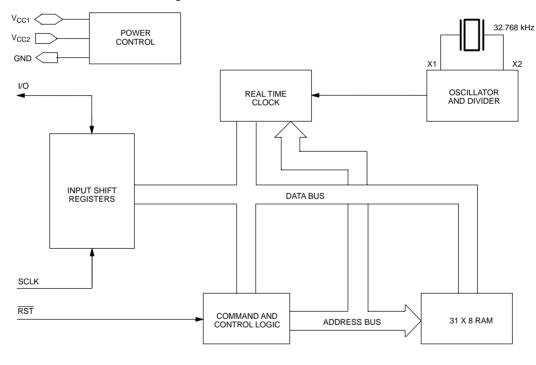
V_{CC1}, V_{CC2} – Power Supply Pins

ORDERING INFORMATION

PART #	DESCRIPTION
DS1302	Serial Timekeeping Chip; 8-pin DIP
DS1302S	Serial Timekeeping Chip;
	8–pin SOIC (200 mil)
DS1302Z	Serial Timekeeping Chip;
	8–pin SOIC (150 mil)

Interfacing the DS1302 with a microprocessor is simplified by using synchronous serial communication. Only three wires are required to communicate with the clock/ RAM: (1) $\overline{\text{RST}}$ (Reset), (2) I/O (Data line), and (3) SCLK (Serial clock). Data can be transferred to and from the clock/RAM one byte at a time or in a burst of up to 31 bytes. The DS1302 is designed to operate on very low power and retain data and clock information on less than 1 microwatt.

The DS1302 is the successor to the DS1202. In addition to the basic timekeeping functions of the DS1202, the DS1302 has the additional features of dual power pins for primary and back–up power supplies, programmable trickle charger for V_{CC1} , and seven additional bytes of scratchpad memory.


OPERATION

The main elements of the Serial Timekeeper are shown in Figure 1: shift register, control logic, oscillator, real time clock, and RAM. To initiate any transfer of data, RST is taken high and eight bits are loaded into the shift register providing both address and command information. Data is serially input on the rising edge of the SCLK. The first eight bits specify which of 40 bytes will be accessed, whether a read or write cycle will take place, and whether a byte or burst mode transfer is to occur. After the first eight clock cycles have loaded the command word into the shift register, additional clocks will output data for a read or input data for a write. The number of clock pulses equals eight plus eight for byte mode or eight plus up to 248 for burst mode.

COMMAND BYTE

The command byte is shown in Figure 2. Each data transfer is initiated by a command byte. The MSB (Bit 7) must be a logic "1". If it is zero, writes to the DS1302 will be disabled. Bit 6 specifies clock/calendar data if logic "0" or RAM data if logic "1". Bits one through five specify the designated registers to be input or output, and the LSB (Bit 0) specifies a write operation (input) if logic "0" or read operation (output) if logic "1". The command byte is always input starting with the LSB (Bit 0).

DS1302 BLOCK DIAGRAM Figure 1

ADDRESS/COMMAND BYTE Figure 2

/	6	5	4	3	2	1	0
1	RAM CK	A4	A3	A2	A1	A0	RD

032598 2/12

RESET AND CLOCK CONTROL

All data transfers are initiated by driving the \overline{RST} input high. The \overline{RST} input serves two functions. First, \overline{RST} turns on the control logic which allows access to the shift register for the address/command sequence. Second, the \overline{RST} signal provides a method of terminating either single byte or multiple byte data transfer.

A clock cycle is a sequence of a falling edge followed by a rising edge. For data inputs, data must be valid during the rising edge of the clock and data bits are output on the falling edge of clock. If the \overline{RST} input is low all data transfer terminates and the I/O pin goes to a high impedance state. Data transfer is illustrated in Figure 3. At power–up, \overline{RST} must be a logic "0" until $V_{CC} \ge 2.0$ volts. Also SCLK must be at a logic "0" when \overline{RST} is driven to a logic "1" state.

DATA INPUT

Following the eight SCLK cycles that input a write command byte, a data byte is input on the rising edge of the next eight SCLK cycles. Additional SCLK cycles are ignored should they inadvertently occur. Data is input starting with bit 0.

DATA OUTPUT

Following the eight SCLK cycles that input a read command byte, a data byte is output on the falling edge of the next eight SCLK cycles. Note that the first data bit to be transmitted occurs on the first falling edge after the last bit of the command byte is written. Additional SCLK cycles retransmit the data bytes should they inadvertently occur so long as RST remains high. This operation permits continuous burst mode read capability. Also, the I/O pin is tri–stated upon each rising edge of SCLK. Data is output starting with bit 0.

BURST MODE

Burst mode may be specified for either the clock/calendar or the RAM registers by addressing location 31 decimal (address/command bits one through five = logical one). As before, bit six specifies clock or RAM and bit 0 specifies read or write. There is no data storage capacity at locations 9 through 31 in the Clock/Calendar Registers or location 31 in the RAM registers. Reads or writes in burst mode start with bit 0 of address 0.

As in the case with the DS1202, when writing to the clock registers in the burst mode, the first eight registers must be written in order for the data to be transferred.

However, when writing to RAM in burst mode it is not necessary to write all 31 bytes for the data to transfer. Each byte that is written to will be transferred to RAM regardless of whether all 31 bytes are written or not.

CLOCK/CALENDAR

The clock/calendar is contained in seven write/read registers as shown in Figure 4. Data contained in the clock/ calendar registers is in binary coded decimal format (BCD).

CLOCK HALT FLAG

Bit 7 of the seconds register is defined as the clock halt flag. When this bit is set to logic "1", the clock oscillator is stopped and the DS1302 is placed into a low-power standby mode with a current drain of less than 100 nanoamps. When this bit is written to logic "0", the clock will start. The initial power on state is not defined.

AM-PM/12-24 MODE

Bit 7 of the hours register is defined as the 12- or 24-hour mode select bit. When high, the 12-hour mode is selected. In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM. In the 24-hour mode, bit 5 is the second 10 hour bit (20 - 23 hours).

WRITE PROTECT BIT

Bit 7 of the control register is the write protect bit. The first seven bits (bits 0 - 6) are forced to zero and will always read a zero when read. Before any write operation to the clock or RAM, bit 7 must be zero. When high, the write protect bit prevents a write operation to any other register. The initial power on state is not defined. Therefore the WP bit should be cleared before attempting to write to the device.

TRICKLE CHARGE REGISTER

This register controls the trickle charge characteristics of the DS1302. The simplified schematic of Figure 5 shows the basic components of the trickle charger. The trickle charge select (TCS) bits (bits 4 – 7) control the selection of the trickle charger. In order to prevent accidental enabling, only a pattern of 1010 will enable the trickle charger. All other patterns will disable the trickle charger disabled. The diode select (DS) bits (bits 2 – 3) select whether one diode or two diodes are connected between V_{CC2} and V_{CC1} . If DS is 01, one diode is

DS1302

selected or if DS is 10, two diodes are selected. If DS is 00 or 11, the trickle charger is disabled independent of TCS. The RS bits (bits 0 – 1) select the resistor that is connected between V_{CC2} and V_{CC1} . The resistor selected by the resistor select (RS) bits is as follows:

RS Bits	Resistor	Typical Value
00	None	None
01	R1	2ΚΩ
10	R2	4KΩ
11	R3	8KΩ

If RS is 00, the trickle charger is disabled independent of TCS.

Diode and resistor selection is determined by the user according to the maximum current desired for battery or super cap charging. The maximum charging current can be calculated as illustrated in the following example. Assume that a system power supply of 5V is applied to V_{CC2} and a super cap is connected to V_{CC1}. Also assume that the trickle charger has been enabled with 1 diode and resistor R1 between V_{CC2} and V_{CC1}. The maximum current I_{max} would therefore be calculated as follows:

$$I_{max} = (5.0V - \text{diode drop}) / R1 ~ (5.0V - 0.7V) / 2K\Omega ~ 2.2 mA$$

Obviously, as the super cap charges, the voltage drop between V_{CC2} and V_{CC1} will decrease and therefore the charge current will decrease.

CLOCK/CALENDAR BURST MODE

The clock/calendar command byte specifies burst mode operation. In this mode the first eight clock/calendar registers can be consecutively read or written (see Figure 4) starting with bit 0 of address 0.

If the write protect bit is set high when a write clock/calendar burst mode is specified, no data transfer will occur to any of the eight clock/calendar registers (this includes the control register). The trickle charger is not accessible in burst mode.

RAM

The static RAM is 31 x 8 bytes addressed consecutively in the RAM address space.

RAM BURST MODE

The RAM command byte specifies burst mode operation. In this mode, the 31 RAM registers can be consecutively read or written (see Figure 4) starting with bit 0 of address 0.

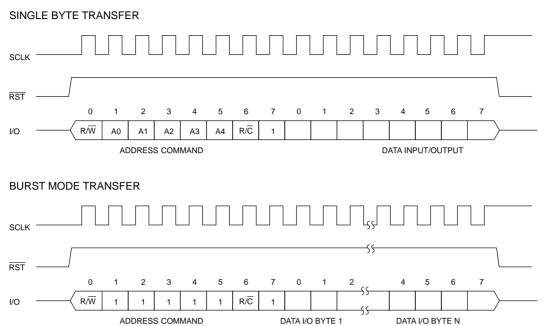
REGISTER SUMMARY

A register data format summary is shown in Figure 4.

CRYSTAL SELECTION

A 32.768 kHz crystal can be directly connected to the DS1302 via pins 2 and 3 (X1, X2). The crystal selected for use should have a specified load capacitance (CL) of 6 pF. For more information on crystal selection and crystal layout consideration, please consult Application Note 58, "Crystal Considerations with Dallas Real Time Clocks".

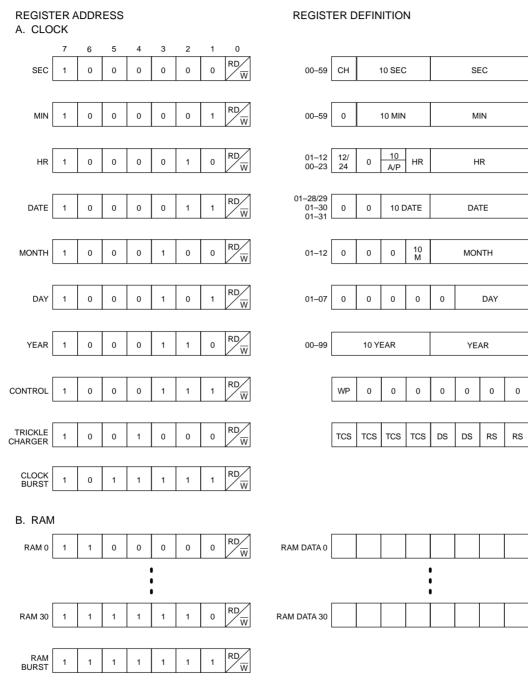
POWER CONTROL


 V_{CC1} provides low power operation in single supply and battery operated systems as well as low power battery backup.

 V_{CC2} provides the primary power in dual supply systems where V_{CC1} is connected to a backup source to maintain the time and data in the absence of primary power.

The DS1302 will operate from the larger of V_{CC1} or V_{CC2}. When V_{CC2} is greater than V_{CC1} + 0.2V, V_{CC2} will power the DS1302. When V_{CC2} is less than V_{CC1}, V_{CC1} will power the DS1302.

032598 4/12


DATA TRANSFER SUMMARY Figure 3

FUNCTION	BYTE N	SCLK n
CLOCK	8	72
RAM	31	256

032598 5/12

REGISTER ADDRESS/DEFINITION Figure 4

032598 6/12

R1 2KΩ V_{CC1} V_{CC2} \mathbb{K} 4ΚΩ Þ PIN #1 PIN #8 R3 4 1 OF 16 SELECT (NOTE: ONLY 1010 CODE ENABLES CHARGER 1 OF 2 SELECT 1 OF 3 SELECT TCS = TRICKLE CHARGER SELECT DS = DIODE SELECT RS RESISTOR SELECT = TRICKLE CHARGE REGISTER TCS TCS TCS TCS DS DS RS RS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

DS1302 PROGRAMMABLE TRICKLE CHARGER Figure 5

032598 7/12

DS1302

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Ground Operating Temperature Storage Temperature Soldering Temperature -0.5V to +7.0V 0°C to 70°C -55°C to +125°C 260°C for 10 seconds

* This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

The Dallas Semiconductor DS1302 is built to the highest quality standards and manufactured for long term reliability. All Dallas Semiconductor devices are made using the same quality materials and manufacturing methods. However, standard versions of the DS1302 are not exposed to environmental stresses, such as burn–in, that some industrial applications require. Products which have successfully passed through this series of environmental stresses are marked IND or N, denoting their extended operating temperature and reliability rating. For specific reliability information on this product, please contact the factory in Dallas at (972) 371–4448.

RECOMMENDED DC OPERATING CONDITIONS

(0°C to 70°C)

PARAMETER	SYM	IBOL	MIN	ТҮР	MAX	UNITS	NOTES
Supply Voltage V_{CC1} , V_{CC2}	V _{CC1} , V _{CC2}		2.0		5.5	V	1, 11
Logic 1 Input	VIH		2.0		V _{CC} +0.3	V	1
	M	V _{CC} =2.0V	-0.3		+0.3	v	
Logic 0 Input	VIL	V _{CC} =5V	-0.3		+0.8		

DC ELECTRICAL	CHARACTERISTICS
---------------	-----------------

 $(0^{\circ}C \text{ to } 70^{\circ}C; V_{CC} = 2.0 \text{ to } 5.5V^*)$

PARAMETER	SYI	MBOL	MIN	TYP	MAX	UNITS	NOTES
Input Leakage	ILI				+500	μA	6
I/O Leakage	I _{LO}				+500	μA	6
Logic 1 Output		V _{CC} =2.0V	1.6			v	2
	V _{OH}	V _{CC} =5V] `	2	
	N	V _{CC} =2.0V			0.4		
Logic 0 Output	V _{OL}	V _{CC} =5V			0.4		3
Asting Operate Operat		V _{CC1} =2.0V			0.4	mA	5, 12
Active Supply Current	ICC1A	V _{CC1} =5V			1.2		
Time I and a solution Operation		V _{CC1} =2.0V			0.3		
Timekeeping Current	ICC1T	V _{CC1} =5V			1	μA	4,12
		V _{CC1} =2.0V			100		10, 12,
Standby Current	I _{CC1S}	V _{CC1} =5V			100	nA	14
Asting Operate Operation		V _{CC2} =2.0V			0.425	- mA	5, 13
Active Supply Current	I _{CC2A}	V _{CC2} =5V			1.28		

*Unless otherwise noted.

032598 8/12

DC ELECTRICAL CHARACTERISTICS (cont'd)

$(0^{\circ}C \text{ to } 70^{\circ}C; V_{CC} = 2.0 \text{ to } 5.5V^*)$

PARAMETER	SYN	IBOL	MIN	TYP	MAX	UNITS	NOTES
Timekeeping Current		V _{CC2} =2.0V			25.3	Δ	4.40
Timekeeping Current	ICC2T	V _{CC2} =5V			81	μΑ	4,13
Stondby Current		V _{CC2} =2.0V			25	μΑ	10, 13
Standby Current	ICC2S	V _{CC2} =5V			80		
Trickle Charge Resistors	R1 R2 R3			2 4 8		ΚΩ ΚΩ ΚΩ	
Trickle Charger Diode Voltage Drop	V _{TD}			0.7		V	

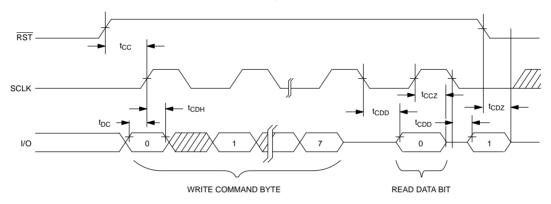
*Unless otherwise noted.

CAPACITANCE								
PARAMETER	SYMBOL	CONDITION	ТҮР	MAX	UNITS	NOTES		
Input Capacitance	CI		10		pF			
I/O Capacitance	C _{I/O}		15		pF			
Crystal Capacitance	C _X		6		pF			

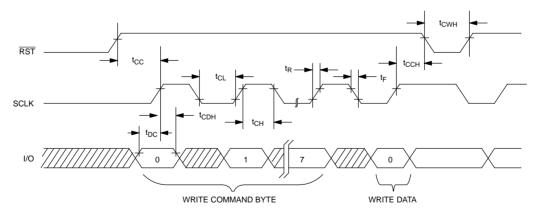
AC ELECTRICAL CHARACTERISTICS

(0°C to 70°C; V_{CC} = 2.0 to 5.5V*)

PARAMETER	SYN	IBOL	MIN	TYP	MAX	UNITS	NOTES
Data to CLK Satur		V _{CC} =2.0V	200				7
Data to CLK Setup	t _{DC}	V _{CC} =5V	50			ns	· /
		V _{CC} =2.0V	280				7
CLK to Data Hold	t _{CDH}	V _{CC} =5V	70			ns	· /
CLK to Data Dalay		V _{CC} =2.0V			800		7.9.0
CLK to Data Delay	t _{CDD}	V _{CC} =5V			200	ns	7, 8, 9
		V _{CC} =2.0V	1000			ns	7
CLK Low Time	t _{CL}	V _{CC} =5V	250				· /
		V _{CC} =2.0V	1000			- ns	7
CLK High Time	t _{CH}	V _{CC} =5V	250				
		V _{CC} =2.0V			0.5		7
CLK Frequency	t _{CLK}	V _{CC} =5V	DC		2.0	MHz	
		V _{CC} =2.0V			2000		
CLK Rise and Fall	t _R , t _F	V _{CC} =5V			500	ns	
		V _{CC} =2.0V	4				7
RST to CLK Setup	tcc	V _{CC} =5V	1			μs	7


*Unless otherwise noted.

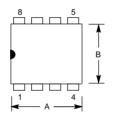
DS1302

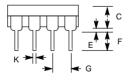

AC ELECTRICAL CHARACTERISTICS (cont'd) (0°C to 70°C; V_{CC} = 2.0 to 5.5V*) PARAMETER UNITS SYMBOL MIN TYP MAX NOTES V_{CC}=2.0V 240 CLK to RST Hold t_{CCH} ns 7 V_{CC}=5V 60 V_{CC}=2.0V 4 RST Inactive Time μs 7 t_{CWH} V_{CC}=5V 1 V_{CC}=2.0V 280 RST to I/O High Z 7 ns t_{CDZ} V_{CC}=5V 70 V_{CC}=2.0V 280 SCLK to I/O High Z ns 7 t_{CCZ} V_{CC}=5V 70

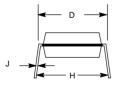
*Unless otherwise noted.

TIMING DIAGRAM: READ DATA TRANSFER Figure 5

TIMING DIAGRAM: WRITE DATA TRANSFER Figure 6

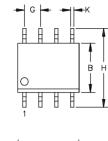


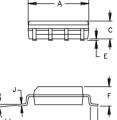

032598 10/12


NOTES:

- 1. All voltages are referenced to ground.
- 2. Logic one voltages are specified at a source current of 1 mA at V_{CC}=5V and 0.4 mA at V_{CC}=2.0V, V_{OH}=V_{CC} for capacitive loads.
- 3. Logic zero voltages are specified at a sink current of 4 mA at V_{CC} =5V and 1.5 mA at V_{CC} =2.0V, V_{OL} =GND for capacitive loads.
- 4. I_{CC1T} and I_{CC2T} are specified with I/O open, RST set to a logic "0", and clock halt flag=0 (oscillator enabled).
- 5. I_{CC1A} and I_{CC2A} are specified with the I/O pin open, \overline{RST} high, SCLK=2 MHz at V_{CC} =5V; SCLK=500 kHz, V_{CC} =2.0V and clock halt flag=0 (oscillator enabled).
- 6. RST, SCLK, and I/O all have $40K\Omega$ pull-down resistors to ground.
- 7. Measured at V_{IH}=2.0V or V_{IL}=0.8V and 10 ms maximum rise and fall time.
- 8. Measured at V_{OH}=2.4V or V_{OL}=0.4V.
- 9. Load capacitance = 50 pF.
- 10. I_{CC1S} and I_{CC2S} are specified with RST, I/O, and SCLK open. The clock halt flag must be set to logic one (oscillator disabled).
- 11. $V_{CC}=V_{CC2}$, when $V_{CC2}>V_{CC1}+0.2V$; $V_{CC}=V_{CC1}$, when $V_{CC1}>V_{CC2}$.
- 12. V_{CC2}=0 volts.
- 13. V_{CC1}=0 volts.
- 14. Typical values are at 25°C.

DS1302 SERIAL TIMEKEEPER 8-PIN DIP (300 MIL)





PKG	8–PIN		
DIM	MIN	МАХ	
A IN.	0.360	0.400	
MM	9.14	10.16	
B IN.	0.240	0.260	
MM	6.10	6.60	
C IN.	0.120	0.140	
MM	3.05	3.56	
D IN.	0.300	0.325	
MM	7.62	8.26	
E IN.	0.015	0.040	
MM	0.38	1.02	
F IN.	0.120	0.140	
MM	3.04	3.56	
G IN.	0.090	0.110	
MM	2.29	2.79	
H IN.	0.320	0.370	
MM	8.13	9.40	
J IN.	0.008	0.012	
MM	0.20	0.30	
K IN.	0.015	0.021	
MM	0.38	0.53	

032598 11/12

DS1302S SERIAL TIMEKEEPER 8-PIN SOIC (150 MIL AND 200 MIL)

PKG	8–PIN (150 MIL)		8–PIN (200 MIL)		
DIM	MIN	МАХ	MIN	МАХ	
A IN.	0.188	0.196	0.203	0.213	
MM	4.78	4.98	5.16	5.41	
B IN.	0.150	0.158	0.203	0.213	
MM	3.81	4.01	5.16	5.41	
C IN.	0.048	0.062	0.070	0.074	
MM	1.22	1.57	1.78	1.88	
E IN.	0.004	0.010	0.004	0.010	
MM	0.10	0.25	0.10	0.25	
F IN.	0.053	0.069	0.074	0.084	
MM	1.35	1.75	1.88	2.13	
G IN.	0.050 BSC				
MM	1.27 BSC				
H IN.	0.230	0.244	0.302	0.318	
MM	5.84	6.20	7.67	8.08	
J IN.	0.007	0.011	0.006	0.010	
MM	0.18	0.28	0.15	0.25	
K IN.	0.012	0.020	0.013	0.020	
MM	0.30	0.51	0.33	0.51	
L IN.	0.016	0.050	0.019	0.030	
MM	0.41	1.27	0.48	0.76	
phi	0°	8°	0°	8°	
56–G2008–001					

56–G2008–001 56–G4010–001

032598 12/12

ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www.lifeelectronics.ru